端到端与VLA自动驾驶小班课

Search documents
从零开始!自动驾驶端到端与VLA学习路线图~
自动驾驶之心· 2025-08-24 23:32
点击下方 卡片 ,关注" 自动驾驶之心 "公众号 戳我-> 领取 自动驾驶近15个 方向 学习 路线 端到端和VLA涉及的技术栈实在是太多了,今天就从小白入门学习的角度和大家聊聊端到端和VLA的发展路线。 首先看一下大语言模型的近五年的关键时间线: 聊大模型,离不开Transformer,为了方便后续理解,我们进行一个通俗的概括。 进一步展开Token化、BPE、位置编码等等~ Transformer: Attention is all you need 3. 合并频次最高的两个非结束字符组成一个新 字符,并重新统计所有字符频次(新字符会分 走部分原高频字符的频次 ) 4. 重复2-3直至字符数量达标or迭代轮次达标 $$P E_{(p o s,2i)}=s i n(p o s/10000^{2i/d_{\mathrm{model}}})$$ PE(pos,2i+1) = COS(pos/1000022/dmodel 7 x D 向量 "这是一段文字" Tokenizer + Positional 231 34 462 4758 762 38 7 x D 向量 Encoding [EQgmbedding 7 ...
端到端VLA的起点:聊聊大语言模型和CLIP~
自动驾驶之心· 2025-08-19 07:20
Core Viewpoint - The article discusses the development and significance of end-to-end (E2E) algorithms in autonomous driving, emphasizing the integration of various advanced technologies such as large language models (LLMs), diffusion models, and reinforcement learning (RL) in enhancing the capabilities of autonomous systems [21][31]. Summary by Sections Section 1: Overview of End-to-End Autonomous Driving - The first chapter provides a comprehensive overview of the evolution of end-to-end algorithms, explaining the transition from modular approaches to end-to-end solutions, and discussing the advantages and challenges of different paradigms [40]. Section 2: Background Knowledge - The second chapter focuses on the technical stack associated with end-to-end systems, detailing the importance of LLMs, diffusion models, and reinforcement learning, which are crucial for understanding the future job market in this field [41][42]. Section 3: Two-Stage End-to-End Systems - The third chapter delves into two-stage end-to-end systems, exploring their emergence, advantages, and disadvantages, while also reviewing notable works in the field such as PLUTO and CarPlanner [42][43]. Section 4: One-Stage End-to-End and VLA - The fourth chapter highlights one-stage end-to-end systems, discussing various subfields including perception-based methods and the latest advancements in VLA (Vision-Language Alignment), which are pivotal for achieving the ultimate goals of autonomous driving [44][50]. Section 5: Practical Application and RLHF Fine-Tuning - The fifth chapter includes a major project focused on RLHF (Reinforcement Learning from Human Feedback) fine-tuning, providing practical insights into building pre-training and reinforcement learning modules, which are applicable to VLA-related algorithms [52]. Course Structure and Learning Outcomes - The course aims to equip participants with a solid understanding of end-to-end autonomous driving technologies, covering essential frameworks and methodologies, and preparing them for roles in the industry [56][57].
正式开课!端到端与VLA自动驾驶小班课,优惠今日截止~
自动驾驶之心· 2025-08-13 23:33
Core Viewpoint - The article emphasizes the significance of VLA (Vision-Language Alignment) as a new milestone in the mass production of autonomous driving technology, highlighting the progressive development from E2E (End-to-End) to VLA, and the growing interest from professionals in transitioning to this field [1][11]. Course Overview - The course titled "End-to-End and VLA Autonomous Driving Small Class" aims to provide in-depth knowledge of E2E and VLA algorithms, addressing the challenges faced by individuals looking to transition into this area [1][12]. - The curriculum is designed to cover various aspects of autonomous driving technology, including foundational knowledge, advanced models, and practical applications [5][15]. Course Structure - **Chapter 1**: Introduction to End-to-End Algorithms, covering the historical development and the transition from modular to end-to-end approaches, including the advantages and challenges of each paradigm [17]. - **Chapter 2**: Background knowledge on E2E technology stacks, focusing on key areas such as VLA, diffusion models, and reinforcement learning, which are crucial for future job interviews [18]. - **Chapter 3**: Exploration of two-stage end-to-end methods, discussing notable algorithms and their advantages compared to one-stage methods [18]. - **Chapter 4**: In-depth analysis of one-stage end-to-end methods, including various subfields like perception-based and world model-based approaches, culminating in the latest VLA techniques [19]. - **Chapter 5**: Practical assignment focusing on RLHF (Reinforcement Learning from Human Feedback) fine-tuning, providing hands-on experience with pre-training and reinforcement learning modules [21]. Target Audience and Learning Outcomes - The course is aimed at individuals with a foundational understanding of autonomous driving and related technologies, such as transformer models and reinforcement learning [28]. - Upon completion, participants are expected to achieve a level equivalent to one year of experience as an end-to-end autonomous driving algorithm engineer, mastering various methodologies and being able to apply learned concepts to real-world projects [28].
即将开课!端到端与VLA自动驾驶小班课来啦(扩散模型/VLA等)
自动驾驶之心· 2025-08-10 23:32
Core Viewpoint - End-to-End Autonomous Driving (E2E) is identified as the core algorithm for intelligent driving mass production, with significant advancements and competition emerging in the industry following the recognition of UniAD at CVPR [2][3] Group 1: E2E Autonomous Driving Overview - E2E systems directly model the relationship between sensor inputs and vehicle control information, avoiding error accumulation seen in traditional modular approaches [2] - The introduction of BEV perception has bridged gaps between modular methods, leading to a significant technological leap [2] - The emergence of various algorithms indicates that UniAD is not the ultimate solution for E2E, highlighting the rapid development in this field [2] Group 2: Learning Challenges in E2E - The fast-paced development in E2E technology has made previous educational resources inadequate, necessitating a comprehensive understanding of multiple domains such as multimodal large models, BEV perception, and reinforcement learning [3][4] - Beginners face challenges due to fragmented knowledge and the overwhelming volume of literature, often leading to abandonment before mastering the concepts [3] Group 3: Course Development - A new course titled "End-to-End and VLA Autonomous Driving" has been developed to address learning challenges, focusing on practical and theoretical integration [4][5][6] - The course aims to provide a structured framework for understanding E2E research and enhance research capabilities by categorizing papers and extracting innovative points [5] Group 4: Course Structure - The course includes five chapters covering topics from the introduction of E2E algorithms to practical applications involving RLHF fine-tuning [9][10][11][12][13] - Key areas of focus include the evolution of E2E paradigms, the significance of VLA in the current landscape, and practical implementations of diffusion models [11][12] Group 5: Expected Outcomes - Participants are expected to achieve a level equivalent to one year of experience as an E2E autonomous driving algorithm engineer, mastering various methodologies and key technologies [18] - The course aims to facilitate the application of learned concepts in real-world projects, enhancing employability in the autonomous driving sector [18]
开课倒计时!国内首个自动驾驶端到端项目级教程来啦~
自动驾驶之心· 2025-08-02 06:00
Core Viewpoint - End-to-end (E2E) autonomous driving is currently the core algorithm for mass production in intelligent driving, with significant advancements in the VLM/VLA systems leading to high demand for related positions and salaries reaching up to 1 million annually [2][11]. Group 1: Industry Trends - The concept of E2E has evolved significantly, with various technical schools emerging, yet many still struggle to understand its workings and distinctions between single-stage and two-stage approaches [2][4]. - The introduction of VLA (Vision-Language Architecture) is seen as a new frontier in autonomous driving, with companies actively researching and developing new generation mass production solutions [21][22]. Group 2: Educational Initiatives - A new course titled "End-to-End and VLA Autonomous Driving" has been launched to address the challenges faced by newcomers in the field, focusing on practical applications and theoretical foundations [14][27]. - The course aims to provide a comprehensive understanding of E2E autonomous driving, covering various models and methodologies, including diffusion models and reinforcement learning [6][19][21]. Group 3: Job Market Insights - The job market for VLA/VLM algorithm experts is robust, with salaries for positions requiring 3-5 years of experience ranging from 40K to 70K monthly, indicating a strong demand for skilled professionals [11][12]. - Positions such as VLA model quantization deployment engineers and multi-modal VLA model direction experts are particularly sought after, reflecting the industry's shift towards advanced algorithmic solutions [11][12].
从端到端到VLA,自动驾驶量产开始往这个方向发展...
自动驾驶之心· 2025-07-26 13:30
Core Viewpoint - End-to-end (E2E) autonomous driving is currently the core algorithm for mass production in the intelligent driving sector, with significant advancements in VLM (Vision-Language Model) and VLA (Vision-Language Architecture) systems driving the industry forward [2][3]. Group 1: Industry Trends - The E2E approach has become a competitive focus for domestic new energy vehicle manufacturers, with the emergence of VLA concepts leading to a new wave of production scheme iterations [2]. - Salaries for positions related to VLM/VLA are reported to reach up to one million annually, with monthly salaries around 70K [2]. - The rapid development of technology has made previous solutions inadequate, necessitating a comprehensive understanding of various technical fields such as multimodal large models, BEV perception, reinforcement learning, and diffusion models [3][4]. Group 2: Educational Initiatives - A new course titled "End-to-End and VLA Autonomous Driving" has been developed to address the challenges faced by learners in this complex field, focusing on practical applications and theoretical foundations [4][5][6]. - The course aims to provide a structured learning path, helping students build a framework for research and enhance their research capabilities by categorizing papers and extracting innovative points [5]. - Practical components are included to ensure a complete learning loop from theory to application, addressing the gap between academic knowledge and real-world implementation [6]. Group 3: Course Structure - The course is divided into several chapters, covering topics such as the history and evolution of E2E algorithms, background knowledge on relevant technologies, and detailed explorations of both one-stage and two-stage E2E methods [9][10][11]. - Key areas of focus include the introduction of various E2E paradigms, the significance of world models, and the application of diffusion models in trajectory prediction [11][12]. - The final chapter includes a major project on RLHF (Reinforcement Learning from Human Feedback) fine-tuning, allowing students to apply their knowledge in practical scenarios [13]. Group 4: Target Audience and Outcomes - The course is designed for individuals with a foundational understanding of autonomous driving and related technologies, aiming to elevate their expertise to a level comparable to that of an E2E autonomous driving algorithm engineer within a year [20]. - Participants will gain a comprehensive understanding of E2E frameworks, including one-stage, two-stage, world models, and diffusion models, as well as deeper insights into key technologies like BEV perception and multimodal large models [20].
面试了很多端到端候选人,发现还是有很多人搞不清楚。。。
自动驾驶之心· 2025-07-13 13:18
Core Viewpoint - End-to-End Autonomous Driving is a key algorithm for intelligent driving mass production, with significant salary potential for related positions, and it has evolved into various technical branches since the introduction of UniAD [2] Group 1: Overview of End-to-End Autonomous Driving - End-to-End Autonomous Driving can be categorized into one-stage and two-stage approaches, with the core advantage being direct modeling from sensor input to vehicle planning/control, avoiding error accumulation seen in modular methods [2] - The emergence of BEV perception has bridged gaps between modular methods, leading to a significant technological leap [2] - The academic and industrial focus on End-to-End technology has raised questions about whether UniAD is the ultimate solution, indicating ongoing developments in various algorithms [2] Group 2: Challenges in Learning - The rapid development of End-to-End technology has made previous solutions inadequate, necessitating knowledge in multimodal large models, BEV perception, reinforcement learning, visual transformers, and diffusion models [4] - Beginners often struggle with the fragmented nature of knowledge and the overwhelming number of papers, leading to challenges in extracting frameworks and understanding industry trends [4] Group 3: Course Features - The newly developed course on End-to-End and VLA Autonomous Driving aims to address learning challenges by providing a structured approach to mastering core technologies [5] - The course emphasizes Just-in-Time Learning, helping students quickly grasp key concepts and expand their knowledge in specific areas [5] - It aims to build a framework for research capabilities, enabling students to categorize papers and extract innovative points [6] Group 4: Course Outline - The course includes chapters on the introduction to End-to-End algorithms, background knowledge, two-stage End-to-End methods, one-stage End-to-End methods, and practical applications [11][12][13] - Key topics include the evolution of End-to-End methods, the significance of BEV perception, and the latest advancements in VLA [9][14] Group 5: Target Audience and Expected Outcomes - The course is designed for individuals aiming to enter the autonomous driving industry, providing a comprehensive understanding of End-to-End technologies [19] - Upon completion, participants are expected to achieve a level equivalent to one year of experience as an End-to-End Autonomous Driving algorithm engineer, mastering various methodologies and key technologies [22]
端到端VLA这薪资,让我心动了。。。
自动驾驶之心· 2025-07-10 12:40
Core Viewpoint - End-to-End Autonomous Driving (E2E) is the core algorithm for intelligent driving mass production, marking a new phase in the industry with significant advancements and competition following the recognition of UniAD at CVPR [2] Group 1: E2E Autonomous Driving Overview - E2E can be categorized into single-stage and two-stage approaches, directly modeling from sensor data to vehicle control information, thus avoiding error accumulation seen in modular methods [2] - The emergence of BEV perception has bridged gaps between modular methods, leading to a significant technological leap [2] - The rapid development of E2E has led to a surge in demand for VLM/VLA expertise, with potential salaries reaching millions annually [2] Group 2: Learning Challenges - The fast-paced evolution of E2E technology has made previous learning materials outdated, necessitating a comprehensive understanding of multi-modal large models, BEV perception, reinforcement learning, and more [3] - Beginners face challenges in synthesizing knowledge from numerous fragmented papers and transitioning from theory to practice due to a lack of high-quality documentation [3] Group 3: Course Development - A new course titled "End-to-End and VLA Autonomous Driving" has been developed to address learning challenges, focusing on Just-in-Time Learning to help students quickly grasp core technologies [4] - The course aims to build a framework for research capabilities, enabling students to categorize papers and extract innovative points [5] - Practical applications are integrated into the course to ensure a complete learning loop from theory to practice [6] Group 4: Course Structure - The course consists of multiple chapters covering the history and evolution of E2E algorithms, background knowledge, two-stage and one-stage E2E methods, and the latest advancements in VLA [8][9][10] - Key topics include the introduction of E2E algorithms, background knowledge on VLA, and practical applications of diffusion models and reinforcement learning [11][12] Group 5: Target Audience and Outcomes - The course is designed for individuals with a foundational understanding of autonomous driving and aims to elevate participants to a level comparable to one year of experience as an E2E algorithm engineer [19] - Participants will gain a deep understanding of key technologies such as BEV perception, multi-modal large models, and reinforcement learning, enabling them to apply learned concepts to real-world projects [19]
筹备了半年!端到端与VLA自动驾驶小班课来啦(一段式/两段式/扩散模型/VLA等)
自动驾驶之心· 2025-07-09 12:02
Core Viewpoint - End-to-End Autonomous Driving is the core algorithm for the next generation of intelligent driving mass production, marking a significant shift in the industry towards more integrated and efficient systems [1][3]. Group 1: End-to-End Autonomous Driving Overview - End-to-End Autonomous Driving can be categorized into single-stage and two-stage approaches, with the former directly modeling vehicle planning and control from sensor data, thus avoiding error accumulation seen in modular methods [1][4]. - The emergence of UniAD has initiated a new wave of competition in the autonomous driving sector, with various algorithms rapidly developing in response to its success [1][3]. Group 2: Challenges in Learning and Development - The rapid advancement in technology has made previous educational resources outdated, creating a need for updated learning paths that encompass multi-modal large models, BEV perception, reinforcement learning, and more [3][5]. - Beginners face significant challenges due to the fragmented nature of knowledge across various fields, making it difficult to extract frameworks and understand development trends [3][6]. Group 3: Course Structure and Content - The course on End-to-End and VLA Autonomous Driving aims to address these challenges by providing a structured learning path that includes practical applications and theoretical foundations [5][7]. - The curriculum covers the history and evolution of End-to-End algorithms, background knowledge necessary for understanding current technologies, and practical applications of various models [8][9]. Group 4: Key Technologies and Innovations - The course highlights significant advancements in two-stage and single-stage End-to-End methods, including notable algorithms like PLUTO and DiffusionDrive, which represent the forefront of research in the field [4][10][12]. - The integration of large language models (VLA) into End-to-End systems is emphasized as a critical area of development, with companies actively exploring new generation mass production solutions [13][14]. Group 5: Expected Outcomes and Skills Development - Upon completion of the course, participants are expected to reach a level equivalent to one year of experience as an End-to-End Autonomous Driving algorithm engineer, mastering various methodologies and key technologies [22][23]. - The course aims to equip participants with the ability to apply learned concepts to real-world projects, enhancing their employability in the autonomous driving sector [22][23].