量子化学

Search documents
美日科研成果 量子计算与传统超算联袂模拟分子行为
Huan Qiu Wang Zi Xun· 2025-07-08 02:00
Core Insights - IBM and RIKEN researchers successfully simulated quantum behaviors of various molecules by combining quantum and supercomputing technologies, paving new paths for chemical and pharmaceutical research [1][2] Group 1: Research Collaboration - IBM's "Eagle" quantum computer collaborated with Japan's "Fugaku" supercomputer to simulate the quantum states of nitrogen molecules and two iron-sulfur compounds using a spatial quantum dynamics algorithm [1] - The quantum computer performed core calculations while the supercomputer acted as a "quality inspector," correcting errors in real-time [1] Group 2: Performance and Future Prospects - Although the hybrid model has not yet surpassed the independent performance of supercomputers, it has demonstrated competitive capabilities in computational chemistry [2] - Kenneth M. Moritz from Cleveland Clinic noted that the improved spatial quantum dynamics algorithm can simulate molecular behavior in solution, making chemical modeling more realistic [2] - There is optimism that the combination of quantum and classical computing could show significant advantages within a year after further algorithm optimization [2] Group 3: Industry Developments - NVIDIA has developed a software platform supporting hybrid computing, while Microsoft emphasizes the transformative potential of the combination of quantum computing, supercomputing, and artificial intelligence in chemistry and materials science [2] - Caution is expressed by Markus Reiher from ETH Zurich, who highlights the need to observe the method's performance in large molecule simulations before it can be considered the preferred approach for quantum chemical calculations [2] Group 4: Ongoing Improvements - The RIKEN laboratory has upgraded to a new IBM quantum processor with lower error rates, and the research team is working on optimizing the spatial quantum dynamics algorithm and enhancing the collaboration efficiency between "Eagle" and "Fugaku" [2]
新研究:生物体系中的质子转移受量子力学影响
Xin Hua She· 2025-05-16 13:59
手性是指一个物体或分子在结构上不能与其镜像完全重合的特性。并非所有分子都具有手性,手性分子 和与它互为镜像的异构体可能存在很大的性质差异。科学家此前已知,手性分子在生物系统内广泛存 在,蛋白质、糖、DNA和RNA的基本单元,如氨基酸、单糖和核苷酸,均存在手性且通常以单一手性 存在。 研究人员认为,新发现的机制与量子化学中的"手性诱导的自旋选择性"效应一致,后者描述了具有特定 手性的分子如何与不同自旋方向的电子选择性地相互作用。这一发现意味着,生命体系中的能量与信息 传递可能比先前认为的更具选择性和可控性。质子在生物体系中的运动不仅仅是化学过程,还与量子物 理学有关。 公报说,该研究进一步印证了生命现象中蕴含量子机制的可能性,为量子物理学与生物化学的融合研究 提供了重要例证。这一耦合机制有助于开发控制细胞内信息传递等用途的新型仿生技术。研究人员也强 调,该实验是在实验室条件下在纯化的溶菌酶晶体中进行的,因此存在局限性,尚不清楚观察到的现象 如何在活细胞内的复杂环境中发挥作用。(完) 新华社耶路撒冷5月16日电(记者王卓伦 陈君清)以色列一项新研究发现,生物体系中至关重要的质 子转移过程不仅受到化学因素影响,还受 ...