隧道效应
Search documents
量子论力学100周年,2025年诺贝尔物理学奖公布
仪器信息网· 2025-10-07 12:02
Core Points - The 2025 Nobel Prize in Physics was awarded to scientists John Clarke, Michel H. Devoret, and John M. Martinis for their contributions to quantum mechanics, specifically for discovering macroscopic quantum tunneling and energy quantization in electronic circuits [4][8][34] Group 1: Award Details - The Nobel Prize recognizes the ability to observe quantum tunneling effects at a macroscopic scale, which was previously only studied at the microscopic level [17][30] - The awardees demonstrated that quantum properties can manifest in systems large enough to be held in hand, using superconducting circuits [8][15] Group 2: Experimental Contributions - The experiments conducted by the awardees involved superconductors that could tunnel from one state to another, akin to passing through a wall, and showed that these systems absorb and emit energy in specific quantized amounts [8][19][30] - Their work involved creating a Josephson junction, which allowed for the measurement of quantum phenomena in a system containing billions of Cooper pairs, thus bridging the gap between micro and macro quantum effects [26][30] Group 3: Theoretical Implications - The findings have significant implications for understanding quantum mechanics, as they illustrate that macroscopic systems can exhibit quantum behavior, challenging the notion that quantum effects are only relevant at the microscopic level [32][33] - The research opens new avenues for experimental exploration of quantum phenomena and has potential applications in quantum computing, where the quantized states of circuits can be utilized as qubits [34]