非粮原料生物制造

Search documents
天津工生所吴信研究员在技术驱动非粮原料生物制造微生物蛋白的前沿综述
合成生物学与绿色生物制造· 2025-06-05 10:36
Core Viewpoint - The article emphasizes the transformative potential of synthetic biology in addressing sustainability challenges in traditional agricultural protein production, particularly through the development of microbial protein from non-grain raw materials [1][2]. Group 1: Technological Innovations - The research team has made significant breakthroughs in the use of methanol as a renewable C1 compound, enhancing the efficiency of converting methanol into single-cell protein through metabolic engineering and genomic perturbation [2]. - Innovations in gas-phase non-grain microbial protein production include the construction of a light-dark energy adapter in E. coli, enabling light-driven CO2 assimilation [2]. - The team has developed a machine learning model to decode the composition of degrading enzyme systems based on the structural characteristics of lignocellulose, facilitating the production of microbial protein from agricultural waste [2]. Group 2: Economic and Environmental Impact - The innovative conversion models not only enhance the economic value of agricultural waste but also pave the way for the industrial-scale biosynthesis of microbial protein from these resources, achieving a dual benefit of resource utilization [2]. - The research highlights the integration of synthetic biology and interdisciplinary innovation as a driving force for sustainable protein production, contributing to food security and carbon neutrality goals [6]. Group 3: Future Research Directions - Future research will focus on the super-evolutionary design of chassis cells, the closed-loop integration of negative carbon manufacturing systems, and the construction of AI-driven intelligent bio-manufacturing platforms [6].
天津工生所吴信研究员在技术驱动非粮原料生物制造微生物蛋白的前沿综述
合成生物学与绿色生物制造· 2025-06-05 10:36
团队前期的工作围绕甲醇作为一种可再生的 C1 化合物以及与二氧化碳氢化合成技术的重大突破,通过碳氮协同耦合代谢工程与基因组扰动等多重策 略,有效提升天然甲基营养菌中甲醇向单细胞蛋白的定向转化效率,进而突破工业菌株性能极限,为利用甲醇作为碳源生物制造微生物蛋白大规模工业 化生产提供了关键技术支持;在气态非粮生物制造微生物蛋白方面,通过构建大肠杆菌中的光 - 暗反应能量适配器,实现光驱动 CO 2 同化的全细胞 催化过程;通过电催化 - 生物耦合技术,可将电化学还原 CO 2 生成的甲酸盐与微生物同化模块精准对接,为气态非粮原料的转化技术开辟了负碳生 物制造微生物蛋白的新维度;在固态非粮原料生物合成微生物蛋白技术方面,该团队通过机器学习模型,基于木质纤维素结构特性破译出降解酶系组成 的新算法,进而摆脱复杂性底物结构 - 多样性酶系构效关系的实验先验,精准定制了多种地源性木质纤维素来源的微生物蛋白,达到地源性农业废弃 物资源利用与微生物蛋白生物合成"一草双收"效果。这些创新转化模式不仅提升了农业废弃物资源化利用经济价值,更开辟了农业废弃物规模化生物 合成微生物蛋白的工业化新路径。 以下文章来源于中国科学院天津工业生 ...