Workflow
3D Gaussian
icon
Search documents
FSD v14很有可能是VLA!ICCV'25 Ashok技术分享解析......
自动驾驶之心· 2025-10-24 00:04
Core Insights - Tesla's FSD V14 series has shown rapid evolution with four updates in two weeks, indicating a new phase of accelerated development in autonomous driving technology [4][5] - The transition to an end-to-end architecture from version 12 has sparked industry interest in similar technologies, emphasizing the importance of a unified neural network model for driving control [7][9] Technical Advancements - The end-to-end system reduces intermediate processing steps, allowing for seamless gradient backpropagation from output to perception, enhancing overall model optimization [7] - Ashok highlighted the complexity of encoding human value judgments in autonomous driving scenarios, showcasing the system's ability to learn from human driving data to make nuanced decisions [9] - Traditional modular systems face challenges in defining interfaces for perception and decision-making, while end-to-end models minimize information loss and improve decision-making in rare scenarios [11][13] Data Utilization - Tesla's data engine collects vast amounts of driving data, generating the equivalent of 500 years of driving data daily, which is crucial for training the FSD model [18][19] - The company employs complex mechanisms to gather data from rare scenarios, ensuring the model can generalize effectively [19] Model Structure and Challenges - The ideal end-to-end model structure involves high-dimensional input data (e.g., 7 channels of 5 million pixel camera video) mapped to low-dimensional output signals, presenting significant training challenges [16] - The end-to-end system's architecture is designed to ensure interpretability and safety, avoiding the pitfalls of being a "black box" [20][22] Evaluation Framework - A robust evaluation framework is essential for end-to-end systems, focusing on closed-loop performance and the ability to assess diverse driving behaviors [32][34] - Tesla's closed-loop simulation system plays a critical role in validating the correctness of the end-to-end policy and generating adversarial samples for model testing [36][38] Future Implications - The integration of Tesla's simulation capabilities into robotics suggests potential advancements in embodied AI, enhancing the versatility of AI applications across different domains [40][42]