VLA架构
Search documents
FSD v14很有可能是VLA!ICCV'25 Ashok技术分享解析......
自动驾驶之心· 2025-10-24 00:04
Core Insights - Tesla's FSD V14 series has shown rapid evolution with four updates in two weeks, indicating a new phase of accelerated development in autonomous driving technology [4][5] - The transition to an end-to-end architecture from version 12 has sparked industry interest in similar technologies, emphasizing the importance of a unified neural network model for driving control [7][9] Technical Advancements - The end-to-end system reduces intermediate processing steps, allowing for seamless gradient backpropagation from output to perception, enhancing overall model optimization [7] - Ashok highlighted the complexity of encoding human value judgments in autonomous driving scenarios, showcasing the system's ability to learn from human driving data to make nuanced decisions [9] - Traditional modular systems face challenges in defining interfaces for perception and decision-making, while end-to-end models minimize information loss and improve decision-making in rare scenarios [11][13] Data Utilization - Tesla's data engine collects vast amounts of driving data, generating the equivalent of 500 years of driving data daily, which is crucial for training the FSD model [18][19] - The company employs complex mechanisms to gather data from rare scenarios, ensuring the model can generalize effectively [19] Model Structure and Challenges - The ideal end-to-end model structure involves high-dimensional input data (e.g., 7 channels of 5 million pixel camera video) mapped to low-dimensional output signals, presenting significant training challenges [16] - The end-to-end system's architecture is designed to ensure interpretability and safety, avoiding the pitfalls of being a "black box" [20][22] Evaluation Framework - A robust evaluation framework is essential for end-to-end systems, focusing on closed-loop performance and the ability to assess diverse driving behaviors [32][34] - Tesla's closed-loop simulation system plays a critical role in validating the correctness of the end-to-end policy and generating adversarial samples for model testing [36][38] Future Implications - The integration of Tesla's simulation capabilities into robotics suggests potential advancements in embodied AI, enhancing the versatility of AI applications across different domains [40][42]
FSD V14深度解析!自动驾驶AI的觉醒时刻?
自动驾驶之心· 2025-10-17 16:04
Core Insights - The article discusses the advancements and features of Tesla's Full Self-Driving (FSD) version 14.1, highlighting its potential to achieve a level of "unsupervised" driving experience, surpassing previous versions in terms of safety and functionality [9]. Group 1: FSD V14.1 Features - FSD V14.1 introduces new arrival options for parking, allowing users to select various parking locations such as parking lots, streets, driveways, garages, or curbside [7]. - The update enhances the system's ability to yield for emergency vehicles and improves navigation by integrating routing into the vision-based neural network for real-time handling of blocked roads [7][8]. - Additional features include improved handling of static and dynamic gates, better management of road debris, and enhanced performance in various driving scenarios such as unprotected turns and lane changes [7][8]. Group 2: Technical Advancements - FSD V14.1 aims to cover a broader range of driving scenarios, optimizing performance in parking situations and simplifying user interface design for better efficiency [8]. - The update introduces a "most conservative" driving mode and offers more parking options upon arrival, catering to personalized user preferences [8]. - Significant improvements have been made in handling long-tail scenarios, including navigating around road debris, yielding to special vehicles, and managing system faults [8]. Group 3: Real-World Testing and Performance - Real-world testing of FSD V14.1 has demonstrated its ability to navigate complex environments, such as underground parking lots and construction zones, showcasing its advanced text recognition capabilities [12][15]. - The system has shown improved understanding of traffic signs and hand signals, indicating a significant leap in its contextual awareness and decision-making abilities [18]. - FSD V14.1 has also integrated audio signals into its control model, allowing it to detect emergency vehicles based on sirens, enhancing its situational awareness [21][28]. Group 4: Future Developments - The article mentions that FSD V14.1 is just the beginning, with future updates (V14.2 and V14.3) expected to further enhance the system's capabilities [27]. - There is speculation that the architecture of FSD V14 may incorporate a Vision-Language-Action (VLA) model, which could significantly improve its performance across various driving scenarios [25][28]. - The potential increase in model parameters and context length is anticipated to enhance the system's understanding and decision-making processes, bringing it closer to achieving a level of "awakening" in AI capabilities [28].
千寻智能解浚源:展望迈向通用人形机器人的曙光时刻
Xin Lang Cai Jing· 2025-06-30 08:22
Core Insights - The event "Empowering New Energy, Driving the Future" focused on the transformation of achievements by young scientists and the high-quality development of embodied intelligence, gathering over a hundred young scientists and renowned company entrepreneurs [1] Group 1: Technological Innovations - Dr. Jiyuan Jie from Qianxun Intelligent shared a solution that employs a three-stage learning path similar to large models, which includes pre-training with internet images, imitation learning data from real robots, and reinforcement learning to enhance performance [3] - This architecture addresses the multimodal challenges in traditional imitation learning, allowing models to flexibly choose various paths to achieve the same task rather than just replicating average actions [3] Group 2: Engineering and Commercialization - The true breakthrough in embodied intelligence lies not only in the choice of technological paths but also in the engineering capabilities that enable practical applications, with Qianxun Intelligent possessing top-tier hardware manufacturing capabilities and a pioneering software team [5] - The company's mission is to enable 10% of the global population to own their robots within ten years, showcasing technology maturity through specific industrial applications [5]
自动驾驶未来技术趋势怎样?李想:现阶段VLA是能力最强的架构
news flash· 2025-05-07 13:27
Core Viewpoint - The CEO of Li Auto, Li Xiang, discussed the transition of the auxiliary driving system to the VLA architecture, questioning its efficiency compared to potential future architectures [1] Group 1 - VLA architecture is capable of addressing full autonomous driving, but its efficiency as the optimal solution is uncertain [1] - Li Xiang highlighted that VLA is still based on the transformer architecture, which raises questions about whether transformer is the most efficient architecture available [1] - Currently, VLA is considered the most powerful architecture in terms of capabilities [1]