AI个性化定制
Search documents
2张4090竟能本地微调万亿参数Kimi K2!趋境联合清华北航把算力门槛击穿了
量子位· 2025-11-05 07:56
Core Insights - The article discusses the significant reduction in the cost and complexity of fine-tuning large language models, enabling the use of consumer-grade GPUs for models like DeepSeek 671B and Kimi K2 1TB [1][5][12]. Group 1: Cost Reduction and Technological Advancements - Fine-tuning large models previously required massive GPU resources, with models like Kimi K2 needing up to 2000GB of VRAM, while now only 2-4 consumer-grade GPUs (e.g., 4090) are sufficient [3][4]. - The key to this cost reduction comes from two domestic projects: KTransformers and LLaMA-Factory, which have made significant advancements in model training and fine-tuning [5][6][7]. - KTransformers allows for fine-tuning large models with significantly lower VRAM requirements, needing only around 90GB for Kimi K2 and 70GB for DeepSeek 671B [7][12]. Group 2: Performance and Efficiency - KTransformers has been shown to outperform other frameworks in terms of throughput and memory usage for fine-tuning tasks, making it a viable option for personal workstations [12][13]. - The integration of KTransformers with LLaMA-Factory simplifies the fine-tuning process, allowing users to manage data processing and training without extensive coding knowledge [9][30]. Group 3: Practical Applications and Customization - The article highlights the potential for personalized AI models, enabling users to fine-tune models for specific styles or industry needs, thus democratizing access to advanced AI technologies [24][26]. - Companies can leverage KTransformers to create specialized AI models tailored to their business needs, enhancing efficiency and return on investment [27][28]. Group 4: Technical Innovations - KTransformers employs innovative techniques such as offloading memory-intensive tasks to CPUs and integrating LoRA for efficient fine-tuning, significantly reducing the memory footprint of large models [36]. - The collaboration between KTransformers and LLaMA-Factory represents a strong synergy that enhances both performance and usability in the fine-tuning landscape [32][33].