AI编码模型

Search documents
 4倍速吊打Cursor新模型!英伟达数千GB200堆出的SWE-1.5,圆了Devin的梦!实测被曝性能“滑铁卢”?
 AI前线· 2025-10-31 05:42
 Core Insights - Cognition has launched its new high-speed AI coding model SWE-1.5, designed for high performance and speed in software engineering tasks, now available in the Windsurf code editor [2][3] - SWE-1.5 operates at a speed of up to 950 tokens per second, making it 13 times faster than Anthropic's Sonnet 4.5 model, and significantly improving task completion times [3][4][6]   Performance and Features - SWE-1.5 is built on a model with hundreds of billions of parameters, aiming to provide top-tier performance without compromising speed [3][4] - The model's speed advantage is attributed to a collaboration with Cerebras, which optimized the model for better latency and performance [3][6] - In the SWE-Bench Pro benchmark, SWE-1.5 achieved a score of 40.08%, just behind Sonnet 4.5's 43.60%, indicating near-state-of-the-art coding performance [6]   Development and Infrastructure - SWE-1.5 is trained on an advanced cluster of thousands of NVIDIA GB200 NVL72 chips, which offer up to 30 times better performance and 25% lower costs compared to previous models [10] - The training process utilizes a custom Cascade AI framework and incorporates extensive reinforcement learning techniques to enhance model capabilities [10][11]   Strategic Vision - The development of SWE-1.5 is part of a broader strategy to integrate AI coding capabilities directly into the Windsurf IDE, enhancing user experience and performance [13][15] - Cognition emphasizes the importance of a collaborative system that includes the model, inference process, and agent framework to achieve high speed and intelligence [13][14]   Market Position and Competition - The launch of SWE-1.5 coincides with Cursor's release of its own high-speed model, Composer, indicating a strategic convergence in the AI developer tools market [17] - Both companies are leveraging reinforcement learning in their models, highlighting a shared approach to creating efficient coding agents [17]   User Feedback and Performance - Early user feedback on SWE-1.5 indicates a perception of high speed, although some users reported issues with task completion compared to other models like GPT-5 [18][19]

