Composer

Search documents
 4倍速吊打Cursor新模型,英伟达数千GB200堆出的SWE-1.5,圆了Devin的梦,实测被曝性能“滑铁卢”?
 3 6 Ke· 2025-10-31 12:16
同时,Cognition 称,得益于与推理服务提供商 Cerebras 的合作,SWE-1.5 的运行速度最高可达 Anthropic 旗下 Sonnet 4.5 模型的 13 倍。 比 Sonnet 4.5 快 13 倍,编码性能近 SOTA "开发者不应在'思考速度快'与'思考质量高'的人工智能之间做选择。"Cognition 在官方声明中表示,这一理念是 SWE-1.5 的设计基础。 据介绍,SWE-1.5 经过专门设计,是一款拥有数千亿参数的前沿规模模型,旨在打破上述权衡困境的同时提供顶尖性能与一流速度。而该模型最显著的特 点是其原始速度,这一优势源于与推理领域专业机构 Cerebras 的深度合作:共同部署并优化 SWE-1.5。具体举措包括训练一个经过优化的草稿模型以实现 更快的投机解码以及构建定制化请求优先级系统,让端到端智能体交互过程更流畅。 Cognition 表示,此次合作让 SWE-1.5 实现了极佳的延迟表现,并"还树立了新的速度标准",使其处理速度最高可达 950 token / 秒,分别是 Haiku 4.5 模型 的 6 倍、Sonnet 4.5 模型的 13 倍。"这一性能飞跃 ...
 4倍速吊打Cursor新模型!英伟达数千GB200堆出的SWE-1.5,圆了Devin的梦!实测被曝性能“滑铁卢”?
 AI前线· 2025-10-31 05:42
 Core Insights - Cognition has launched its new high-speed AI coding model SWE-1.5, designed for high performance and speed in software engineering tasks, now available in the Windsurf code editor [2][3] - SWE-1.5 operates at a speed of up to 950 tokens per second, making it 13 times faster than Anthropic's Sonnet 4.5 model, and significantly improving task completion times [3][4][6]   Performance and Features - SWE-1.5 is built on a model with hundreds of billions of parameters, aiming to provide top-tier performance without compromising speed [3][4] - The model's speed advantage is attributed to a collaboration with Cerebras, which optimized the model for better latency and performance [3][6] - In the SWE-Bench Pro benchmark, SWE-1.5 achieved a score of 40.08%, just behind Sonnet 4.5's 43.60%, indicating near-state-of-the-art coding performance [6]   Development and Infrastructure - SWE-1.5 is trained on an advanced cluster of thousands of NVIDIA GB200 NVL72 chips, which offer up to 30 times better performance and 25% lower costs compared to previous models [10] - The training process utilizes a custom Cascade AI framework and incorporates extensive reinforcement learning techniques to enhance model capabilities [10][11]   Strategic Vision - The development of SWE-1.5 is part of a broader strategy to integrate AI coding capabilities directly into the Windsurf IDE, enhancing user experience and performance [13][15] - Cognition emphasizes the importance of a collaborative system that includes the model, inference process, and agent framework to achieve high speed and intelligence [13][14]   Market Position and Competition - The launch of SWE-1.5 coincides with Cursor's release of its own high-speed model, Composer, indicating a strategic convergence in the AI developer tools market [17] - Both companies are leveraging reinforcement learning in their models, highlighting a shared approach to creating efficient coding agents [17]   User Feedback and Performance - Early user feedback on SWE-1.5 indicates a perception of high speed, although some users reported issues with task completion compared to other models like GPT-5 [18][19]
 腾讯研究院AI速递 20251031
 腾讯研究院· 2025-10-30 16:06
https://mp.weixin.qq.com/s/_dmZj9IwtbRLpvXHulQ_8g 二、Cursor 2.0更新,自研模型Composer,多agent并行 生成式AI 一、OpenAI 刚刚开源了两个专门用于安全分类的推理模型 1. OpenAI开源gpt-oss-safeguard安全分类模型(120b和20b版本),采用Apache 2.0许可证,能直接理解策略文档进 行内容分类无需重新训练; 2. 该模型在多个基准测试中表现超越GPT-5-thinking,在内容审核评估集和ToxicChat数据集上达到行业最佳性价 比; 3. OpenAI内部已使用该技术(Safety Reasoner原型)处理图像生成和Sora 2等产品,安全推理算力占比高达16%。 1. Cursor发布2.0版本,推出首个自研编码模型Composer,生成速度达每秒250个token,是同类前沿系统的4倍,标志 从"AI外壳"向"AI原生平台"转型; 2. Composer采用混合专家(MoE)架构,通过强化学习针对软件工程优化,在Cursor Bench评测中达到前沿水平,已被团 队日常开发使用; 3. 新 ...
 老黄亲自站台,英伟达编程神器,Cursor 2.0自研模型狂飙4倍
 3 6 Ke· 2025-10-30 07:33
Cursor迎来重大升级,2.0版本来了! 一直「套壳」的Cursor这次终于发布了首款自研编码模型Composer。 Composer的速度是同等模型的4倍。 Cursor说这是一款专门为低延迟智能编码打造的模型,大部分任务都可以在30秒以内完成。 在Speed一栏,Composer的速度达到了200 Tokens/秒。 【导读】这次不仅发布自研编码模型Composer,还重构了IDE交互逻辑,可以最多8个智能体同时跑,早期测试和开发者都说Cursor 2.0真的太快了。 这次2.0版本还将浏览器嵌入编辑器内,这对于前端开发非常友好。 可以直接选择元素并将DOM信息转发给Cursor。 可以看这个实测,前端开发可以直接在浏览器选定元素,Cursor自动识别对应代码。 这次更新还引入了全新的代码审查功能,更容易查看 Agent 在多个文件中的所有更改,无需在各个文件之间来回切换。 这次一个更大的更新是引入了语音模式(Voice Mode),真就是动嘴编程了。 除了自研模型,Cursor这次重构了交互逻辑,带来了多智能体模式,在单个提示下,可最多并行运行8个智能体。此功能使用git worktrees或远程机器 ...
 Cursor 2.0来了,多agent并行,自研模型30秒跑完多数任务,MXFP8训练
 3 6 Ke· 2025-10-30 04:35
智东西10月30日报道,今天,知名AI编程平台Cursor宣布升级到2.0版本,并推出了Cursor首个自研编程模型Composer,以及用于并行协作多 个Agent的新界面等15项升级。 Composer模型最大的特点就是快。Cursor称,该模型专为在Cursor中进行低延迟的Agentic编程而打造,大多数回合在30秒内即可完成,其速度 达到同等智能模型的4倍,每秒输出的token数已经超过200个。 在Cursor的内部评估中,Composer的智能水平已经超过了最佳的开源编程模型(包括Qwen Coder和GLM 4.6),速度则优于现有的前沿轻量 级模型(包括Claude Haiku 4.5和Gemini Flash 2.5),不过,其智能水平仍然低于GPT-5和Claude Sonnet 4.5。 ▲Composer与前沿开源、闭源模型的智能与速度对比 随着模型Agent能力的不断提升,Cursor的UI也随之升级。Cursor 2.0的UI界面不再以文件为核心,而是围绕Agent进行重新设计,开发者可以 聚焦想要的目标,让不同的Agent分别处理实现细节。 Cursor 2.0现已支持并行运行 ...
 刚刚,Cursor 2.0携自研模型Composer强势登场,不再只做「壳」
 机器之心· 2025-10-30 01:41
机器之心报道 机器之心编辑部 终于,Cursor 还是走上了自己训练大型语言模型的路。 Cursor 2.0 终于来了! 刚刚,Cursor 发布了两项重大更新:首个编码模型 Composer,以及用于并行协作多个智能体的新界面。 此举意义非凡。一直以来,Cursor 虽然广受欢迎,但终究免不了「AI 时代的 VS Code」的帽子,因为它此前只能使用 Claude、GPT 等第三方模型。这既是 Cursor 的起点,也成了它的瓶颈。 Composer 的发布,堪称是 Cursor 打破这个瓶颈的「独立宣言」,这也标志着 Cursor 正式从「AI 外壳」向「AI 原生平台」进化。 自研模型 Composer Composer 是一款前沿模型,虽然智能程度不敌 GPT-5 等最佳前沿模型,但速度确实遥遥领先,达到了同等智能模型的 4 倍。 在基准测试中, Composer 实现了前沿水平的编码智能,同时生成速度达到每秒 250 个 token—— 大约是领先的快速推理模型的两倍,是同类前沿系统的四倍。(注: Cursor 发布的对比将模型分为几个类 别:「最佳开源」(例如, Qwen Coder 、 GLM  ...
 Cursor发布首个编程大模型!代码生成250tokens/秒,强化学习+MoE架构
 量子位· 2025-10-30 01:06
 Core Insights - Cursor has officially released its first in-house coding model, named Composer, as part of the Cursor 2.0 update [1][2] - Composer is reported to complete complex tasks in just 30 seconds, achieving a speed increase of 400% compared to competitors [3][12]   Model Features - The new Cursor 2.0 includes a native browser tool that allows the model to test, debug, and iterate code autonomously until achieving correct results [4] - Voice code generation enables users to convert their thoughts into code without typing [5] - The interface has shifted from a file-centric to an agent-centric model, allowing multiple agents to run simultaneously without interference [6][7]   Performance Metrics - Composer generates code at a speed of 250 tokens per second, which is approximately twice as fast as the current leading models like GPT-5 and Claude Sonnet 4.5 [19][20] - The model demonstrates enhanced reasoning and task generalization capabilities, comparable to mid-tier leading models [21]   Training Methodology - Composer's performance is attributed to reinforcement learning, which allows the model to learn from real programming tasks rather than static datasets [22][26] - The training process involves the model working directly within a complete codebase, utilizing production-level tools to write, test, and debug code [27][28]   Practical Application - Cursor 2.0 is designed to provide a practical AI system that aligns closely with developers' daily workflows, enhancing its usability in real-world scenarios [35][36] - The model has shown emergent behaviors, such as running unit tests and autonomously fixing code format errors [31]   Transparency and Model Origin - There are concerns regarding the transparency of Composer's foundational model, with questions about whether it is based on pre-existing models or entirely self-trained [37][40] - Cursor has previously developed an internal model named Cheetah, which was used for testing speed and system integration [42]







