Workflow
Agent Loop
icon
Search documents
奥特曼小号泄密:OpenAI代码工作100%交给Codex,工程师才揭底Codex“大脑”运行逻辑,碾压Claude架构?
3 6 Ke· 2026-01-26 09:09
用一个 PostgreSQL 主库和 50 个只读副本,就顶住了 ChatGPT 上的 8 亿用户! 近日,OpenAI 的工程师们不仅爆出了这一惊人消息,还直接把 Codex 的"大脑"给扒了个精光。在 OpenAI 官方工程博客主页,OpenAI 工程师、Technical Staff 成员 Michael Bolin 发布了一篇文章,以"揭秘 Codex 智能体循环"为题,深入揭秘了 Codex CLI 的核心框架:智能体循环(Agent Loop),并详细讲 解了 Codex 在查询模型时如何构建和管理其上下文,以及适用于所有基于 Responses API 构建智能体循环的实用注意事项和最佳实践。 这些消息传出后,在 Hacker News 等技术论坛及社交平台上获得了高度关注。"看似平淡的技术最终会胜出。OpenAI 正在证明,优秀的架构远胜于花哨的 工具。" 值得一提的是,有网友透露,前不久 Anthropic 的一位工程师称"他们用于 Claude Code UI 的架构糟糕且效率低下"。而就在刚刚,X 上出现一条爆料: Codex 已接管 OpenAI 100% 的代码编写工作。 Agent ...
奥特曼小号泄密:OpenAI代码工作100%交给Codex!工程师才揭底Codex“大脑”运行逻辑,碾压Claude架构?
AI前线· 2026-01-26 07:19
整理 | 华卫 Codex 的"大脑"揭秘 "每个人工智能智能体的核心都是 Agent Loop,负责协调用户、模型以及模型调用以执行有意义的软 件工作的工具之间的交互。" 据介绍,在 OpenAI 内部,"Codex"涵盖了一系列软件智能体产品,包括 Codex CLI、Codex Cloud 和 Codex VS Code 插件,而支撑它们的框架和执行逻辑是同一个。 用一个 PostgreSQL 主库和 50 个只读副本,就顶住了 ChatGPT 上的 8 亿用户! 近日,OpenAI 的工程师们不仅爆出了这一惊人消息,还直接把 Codex 的"大脑"给扒了个精光。在 OpenAI 官方工程博客主页,OpenAI 工程师、Technical Staff 成员 Michael Bolin 发布了一篇文章, 以"揭秘 Codex 智能体循环"为题,深入揭秘了 Codex CLI 的核心框架:智能体循环(Agent Loop),并详细讲解了 Codex 在查询模型时如何构建和管理其上下文,以及适用于所有基于 Responses API 构建智能体循环的实用注意事项和最佳实践。 这些消息传出后,在 Hacker ...
OpenAI绝地反击,Codex大脑首曝,8亿用户极限架构硬刚Claude
3 6 Ke· 2026-01-26 02:29
Core Insights - Anthropic's Claude Code has gained significant attention in the AI programming community, with developers praising its capabilities as a future-oriented AI assistant [1] - OpenAI has revealed two major updates: the Agent Loop architecture and the PostgreSQL database's ability to support 800 million users [1][24] Group 1: Agent Loop Architecture - The Agent Loop acts as a "conductor," integrating user intent, model brain, and execution tools into a cohesive system [6] - It operates through a cycle of observation, thinking, action, and feedback, allowing AI to function independently rather than just answering questions [8] - The process involves constructing a detailed prompt, model inference, tool calls, result feedback, and looping until the task is completed [10][12][22] Group 2: Key Technologies in Agent Loop - OpenAI has introduced two optimizations to address the challenges of Agent development: Prompt Caching and Compaction [13][21] - Prompt Caching reduces costs by avoiding the need to resend unchanged parts of the conversation history, lowering the cost growth from quadratic to linear [15][17] - Compaction allows the model to summarize long conversations into a shorter format, preserving essential understanding while managing context limitations [21][23] Group 3: PostgreSQL Database Performance - OpenAI's PostgreSQL database supports 800 million ChatGPT users with a single primary node and 50 read replicas, showcasing its robust infrastructure [24][25] - Key technologies include PgBouncer for connection pooling, cache locking mechanisms to prevent cache misses, and cross-regional replication to distribute read requests [27][30] - The architecture emphasizes read-write separation and optimization of read paths, crucial for handling high volumes of read requests [26][28] Group 4: Competitive Landscape - Claude Code's end-to-end development experience poses a direct threat to OpenAI's Codex CLI, pushing OpenAI to enhance its agent architecture [37][41] - OpenAI's updates signal its strong engineering capabilities and infrastructure, indicating a competitive edge in the AI tools market [38][39] - The ongoing competition between Claude Code and OpenAI's Codex is expected to drive further innovation, ultimately benefiting developers [41]