Workflow
Generative Model
icon
Search documents
慕尼黑工业大学等基于SD3开发卫星图像生成方法,构建当前最大规模遥感数据集
3 6 Ke· 2025-06-30 07:47
Core Insights - A new method for generating satellite imagery using geographic climate prompts and Stable Diffusion 3 (SD3) has been proposed by teams from the Technical University of Munich and ETH Zurich, resulting in the creation of the largest and most comprehensive remote sensing dataset, EcoMapper [1][2][4]. Dataset Overview - EcoMapper consists of over 2.9 million RGB satellite images collected from 104,424 global locations, covering 15 land cover types and corresponding climate records [2][5]. - The dataset includes a training set with 98,930 geographic points, each observed over a 24-month period, and a test set with 5,494 geographic points observed over 96 months [5][6]. Methodology - The research developed a text-image generation model based on fine-tuned SD3, which utilizes climate and land cover details to generate realistic synthetic images [4][8]. - A multi-condition model framework using ControlNet was also developed to map climate data or generate time series, simulating landscape evolution [4][12]. Model Performance - The study evaluated the performance of SD3 and DiffusionSat models in generating climate-aware satellite images, with metrics indicating significant improvements over baseline models [14][19]. - The SD3-FT-HR model achieved the lowest Fréchet Inception Distance (FID) score of 49.48, indicating high realism in generated images [15][16]. Climate Sensitivity Analysis - The generated vegetation density was found to be significantly correlated with climate changes, with performance varying under extreme weather conditions [16][18]. Applications and Future Directions - EcoMapper provides a framework for simulating satellite images based on climate variables, offering new opportunities for visualizing climate change impacts and enhancing integration of satellite and climate data for downstream models [22][26].
A Quest for a Cure: AI Drug Design with Isomorphic Labs
Google DeepMind· 2025-06-05 16:56
So, I mean, you literally say, "Make me a drug for X disease. " Off it goes. Says, "Here's the molecule you need. " Yeah. Yeah. Do you think that's possible? It's possible. I think it's possible. I think everything is pointing in that direction. What I've seen firsthand is what can come out of this like explosion of two fields coming together, I think when you've got like experts in two fields and they come together and they're really curious, deeply curious about the other field and they want to apply thei ...
抱团取暖的日本AI半吊子们
Hu Xiu· 2025-05-09 10:07
如何判断一家公司的产品或服务是否属于"前沿AI创新"而非传统的IT信息化? 人们通常是从这四个维度来判断: | 判断维度 | 真AI企业特征 | 假AI企业特征 | | --- | --- | --- | | 核心产品是否基 | 核心依赖深度学习、NLP、生成 模型等技术, | 算法仅是附属工具, 本质是提升信息效率的 | | 于AI算法 | 有自研模型和AI框架 | 系统整合商 | | 产品通用性和扩 技术具备通用性,有API、SDK或 产品为特定客户定制, | | | | 难以复制, 扩展性差 | 展性 开放平台,可迁移到多行业 | | | 是否具备自主学 能实现学习、推理、生成代码等 类似ERP自动化流程, | | | | 仪能完成预设任务 | 习能力 类人智能任务 | | | 本质是数字化服务公司, | 技术定位与商业 输出AI技术本身(如芯片、框架、 | | | 依赖项目落地,一技术积 | 化模式 模型)作为商品,具备技术壁垒 | | | 星薄弱 | | | 从这四个层面依次审视,日本AI创业一哥Preferred Networks都是真AI,而非IT信息化。 它曾经信誓旦旦要国际化,却终究走回了在 ...
清华“挖”来美国顶尖AI学者
Guan Cha Zhe Wang· 2025-04-29 06:52
文章称,兰姆课题组计划招收2025年秋季以及之后入学的博士生、硕士生,以及访问学生(包括本科实 习生),并优先考虑有机器学习和强化学习研究经历的同学。 此外,在神经信息处理系统大会(NeurIPS)、国际机器学习大会(ICML)或国际表征学习大会 (ICLR)这三大机器学习领域的顶级学术会议上有发表经历,将是申请者有力的加分项。 兰姆的研究聚焦于机器学习,尤其是强化学习和生成模型等方向。他近期的研究重点包括通过交互和无 监督探索来学习策略,从丰富的观察数据中学习抽象世界模型,以及探索新型生成模型和序列模型的训 练方法,以期改进长文本和不确定性建模上的表现。 【文/观察者网 张菁娟】美国持续对教育和科学的攻击,正将科学家和研究人员向外推。 香港英文媒体《南华早报》29日援引两名知情人士的话报道称,微软研究院纽约实验室的高级研究员兰 姆(Alex Lamb)将于即将到来的秋季学期加入新成立的清华大学人工智能学院(College of AI),担 任助理教授。兰姆在一封电子邮件中证实了这一消息。 报道称,兰姆在约翰霍普金斯大学获得应用数学和计算机科学学士学位后,于2015年至2020年在加拿大 蒙特利尔大学攻读计算 ...