Group Relative Policy Optimization(GRPO)

Search documents
SimpleVLA-RL:突破 VLA 模型训练瓶颈,RL实现端到端在线训练
具身智能之心· 2025-09-15 00:04
Core Insights - The article discusses the development of the SimpleVLA-RL framework, which enhances the training of Visual-Language-Action (VLA) models in robotics through reinforcement learning (RL) techniques, addressing the limitations of traditional supervised fine-tuning (SFT) methods [2][4][30] Group 1: Research Background and Challenges - VLA models are crucial for integrating visual perception, language understanding, and action generation in robotic control, but current training methods face significant challenges, including data scarcity and weak generalization capabilities [2][5] - The breakthrough in large reasoning models suggests that RL can improve the sequential action planning capabilities of VLA models, but traditional RL methods are limited by manual reward design and the high cost of environmental interactions [2][5] Group 2: Contributions of SimpleVLA-RL - SimpleVLA-RL is designed specifically for VLA, incorporating interactive trajectory sampling and multi-environment parallel rendering, which significantly reduces training costs and improves scalability [6][9] - The framework has achieved state-of-the-art (SOTA) performance across multiple benchmarks, with notable improvements in success rates, such as LIBERO's average success rate increasing from 91.0% to 99.1% [6][12] - SimpleVLA-RL demonstrates enhanced data efficiency, achieving a LIBERO average success rate of 96.9% with only one demonstration trajectory, surpassing traditional methods [16][17] Group 3: Generalization and Real-World Application - The framework shows robust generalization capabilities across unseen tasks, with significant performance improvements in various scenarios, indicating its ability to learn universal skills rather than overfitting to specific data [22][30] - SimpleVLA-RL has proven effective in sim-to-real transfer, with real-world task success rates improving from 17.5% to 38.5%, validating its deployment capabilities [7][21] Group 4: Key Discoveries - The framework has led to the discovery of the "Pushcut" phenomenon, where the RL-trained model autonomously develops more efficient strategies beyond human demonstrations, showcasing the potential for innovative robotic behaviors [24][30] - The effectiveness of SimpleVLA-RL is contingent on the initial model capabilities, with significant performance enhancements observed when starting from a higher baseline success rate [28][29]