SIFT
Search documents
被拒≠失败!这些高影响力论文都被顶会拒收过
具身智能之心· 2025-12-12 01:22
Core Insights - Waymo has released a deep blog detailing its AI strategy centered around its foundational model, emphasizing the use of distillation methods to create high-efficiency models for onboard operations [1][2] - Jeff Dean highlighted the significance of knowledge distillation, comparing it to the creation of the Gemini Flash model, which showcases the importance of distillation in AI model efficiency [1][2] Historical Context of Rejected Papers - Many foundational technologies in AI, such as optimizers for large models and computer vision techniques, were initially rejected by top conferences, showcasing a historical pattern of oversight in recognizing groundbreaking innovations [6] - Notable figures in AI, including Geoffrey Hinton and Yann LeCun, have faced rejection for their pioneering work, which was later recognized as transformative [6] Case Studies of Rejected Innovations - LSTM, a milestone for sequence data processing, was rejected by NIPS in 1996 but later became crucial in speech recognition and machine translation, highlighting the delayed recognition of its value [7][10] - SIFT, a dominant algorithm in computer vision, faced rejection from ICCV and CVPR due to its perceived complexity, yet proved to be vital in real-world image processing [11][13] - Dropout, a key regularization method for deep neural networks, was initially rejected for its radical approach but later became essential in training deep networks effectively [17][19] - Word2Vec, despite being rejected at ICLR, became a cornerstone in NLP due to its efficiency and practical application, eventually receiving recognition for its impact [20][24] - YOLO transformed object detection by prioritizing speed over precision, facing rejection for its perceived shortcomings but later becoming a widely adopted framework in the industry [28][30] Reflection on Peer Review Limitations - The peer review system often struggles to recognize disruptive innovations, leading to a systematic cognitive lag in evaluating groundbreaking research [40][41] - The tendency to equate mathematical complexity with research contribution can hinder the acceptance of simpler yet effective methods [41] - Historical examples illustrate that the true measure of a research's impact is not determined by initial peer review outcomes but by its long-term relevance and problem-solving capabilities [43][47]