Workflow
Training Data
icon
Search documents
Bridging the Sim-to-Real Gap for Accelerated Robot Training
NVIDIA· 2025-08-12 02:07
Robotics has captured our imagination. Building a truly intelligent robot requires a large amount of training data. But capturing realworld training data or manually creating enough synthetic data is expensive and timeconuming.By combining computer graphics with AI, we can help robots learn faster and better understand the real world. NVIDIA Cosmos is a world foundation model platform built for developers to generate the required training data at an industrial scale. Cosmos Predict generates realistic train ...
The Global Race for AI Adoption
Bloomberg Technology· 2025-07-28 19:45
AI Race & Adoption - The US AI action plan aims to compete with China, focusing on both innovation and adoption of AI [1] - Winning the AI race depends on which countries can best utilize AI for economic benefit [2] - The US has an advantage in AI adoption, but the race is still open [3] - AI adoption requires focus on talent, infrastructure, data, and governance frameworks [5][6] US AI Exportation - The US aims to be a net exporter of AI technology, including hardware and software [7] - AI adoption relies on cutting-edge cloud services and software, much of which originates in the US [9] Copyright & Training Data - Access to training data is crucial for the US to stay ahead in the AI race [11][12] - The US government acknowledges the importance of training data for AI development [11] EU Competitiveness - The EU has significant potential to benefit from AI if it focuses on adoption [13] - Addressing digital sovereignty barriers and streamlining regulations are important for the EU to effectively adopt and use AI [13][14]
一招缓解LLM偏科!调整训练集组成,“秘方”在此 | 上交大&上海AI Lab等
量子位· 2025-06-10 07:35AI Processing
IDEAL团队 投稿 量子位 | 公众号 QbitAI 大幅缓解LLM偏科,只需调整SFT训练集的组成。 本来不擅长coding的Llama 3.1-8B,代码能力明显提升。 上海交大&上海AI Lab联合团队提出创新方法 IDEAL ,可显著提升LLM在多种不同领域上的综合性能。 此外,研究还有一些重要发现,比如: 具体来看—— SFT后LLM部分能力甚至退化 大型语言模型 (LLM) 凭借其强大的理解和逻辑推理能力,在多个领域展现了惊人的能力。除了模型参数量的增大, 高质量的数据是公认的LLM性能提升最关键的影响因素。 当对模型进行监督微调(SFT)时,研究人员发现 LLM在多任务场景下常出现"偏科"现象 ——部分能力突出而部分 能力并未涨进,甚至退化。这种不平衡的现象导致大模型在不同的领域上能力不同,进而影响用户体验。 上海交大和上海AI Lab的研究者迅速将目光聚焦到SFT训练的训练集上,是否可以通过调整训练集的组成来缓解LLM 偏科的情况?直觉上来看,直接将LLM的弱势科目的训练数据增加一倍,就可以让最后的结果发生变化。但是,由于 训练数据之间的耦合关系,研究者通过建模量化每个领域数据对于最终结果的 ...