Workflow
Training Data
icon
Search documents
The Global Race for AI Adoption
Bloomberg Technology· 2025-07-28 19:45
AI Race & Adoption - The US AI action plan aims to compete with China, focusing on both innovation and adoption of AI [1] - Winning the AI race depends on which countries can best utilize AI for economic benefit [2] - The US has an advantage in AI adoption, but the race is still open [3] - AI adoption requires focus on talent, infrastructure, data, and governance frameworks [5][6] US AI Exportation - The US aims to be a net exporter of AI technology, including hardware and software [7] - AI adoption relies on cutting-edge cloud services and software, much of which originates in the US [9] Copyright & Training Data - Access to training data is crucial for the US to stay ahead in the AI race [11][12] - The US government acknowledges the importance of training data for AI development [11] EU Competitiveness - The EU has significant potential to benefit from AI if it focuses on adoption [13] - Addressing digital sovereignty barriers and streamlining regulations are important for the EU to effectively adopt and use AI [13][14]
一招缓解LLM偏科!调整训练集组成,“秘方”在此 | 上交大&上海AI Lab等
量子位· 2025-06-10 07:35AI Processing
IDEAL团队 投稿 量子位 | 公众号 QbitAI 大幅缓解LLM偏科,只需调整SFT训练集的组成。 本来不擅长coding的Llama 3.1-8B,代码能力明显提升。 上海交大&上海AI Lab联合团队提出创新方法 IDEAL ,可显著提升LLM在多种不同领域上的综合性能。 此外,研究还有一些重要发现,比如: 具体来看—— SFT后LLM部分能力甚至退化 大型语言模型 (LLM) 凭借其强大的理解和逻辑推理能力,在多个领域展现了惊人的能力。除了模型参数量的增大, 高质量的数据是公认的LLM性能提升最关键的影响因素。 当对模型进行监督微调(SFT)时,研究人员发现 LLM在多任务场景下常出现"偏科"现象 ——部分能力突出而部分 能力并未涨进,甚至退化。这种不平衡的现象导致大模型在不同的领域上能力不同,进而影响用户体验。 上海交大和上海AI Lab的研究者迅速将目光聚焦到SFT训练的训练集上,是否可以通过调整训练集的组成来缓解LLM 偏科的情况?直觉上来看,直接将LLM的弱势科目的训练数据增加一倍,就可以让最后的结果发生变化。但是,由于 训练数据之间的耦合关系,研究者通过建模量化每个领域数据对于最终结果的 ...