DistillDrive

Search documents
闭环碰撞率爆降50%!DistillDrive:异构多模态蒸馏端到端新方案
自动驾驶之心· 2025-08-11 23:33
Core Insights - The article discusses the development of DistillDrive, an end-to-end autonomous driving model that significantly reduces collision rates by 50% and improves closed-loop performance by 3 percentage points compared to baseline models [2][7]. Group 1: Model Overview - DistillDrive utilizes a knowledge distillation framework to enhance multi-modal motion feature learning, addressing the limitations of existing models that overly focus on ego-vehicle status [2][6]. - The model incorporates a structured scene representation as a teacher model, leveraging diverse planning instances for multi-objective learning [2][6]. - Reinforcement learning is introduced to optimize the mapping from states to decisions, while generative modeling is used to construct planning-oriented instances [2][6]. Group 2: Experimental Validation - The model was validated on the nuScenes and NAVSIM datasets, demonstrating a 50% reduction in collision rates and a 3-point improvement in performance metrics [7][37]. - The nuScenes dataset consists of 1,000 driving scenes, while the NAVSIM dataset enhances perception capabilities with high-quality annotations and complex scenarios [33][36]. Group 3: Performance Metrics - DistillDrive outperformed existing models, achieving lower collision rates and reduced L2 error compared to SparseDrive, indicating the effectiveness of diversified imitation learning [37][38]. - The teacher model exhibited superior performance, confirming the effectiveness of reinforcement learning in optimizing state space [37][39]. Group 4: Future Directions - Future work aims to integrate world models with language models to further enhance planning performance and employ more effective reinforcement learning methods [54][55].