GRACE
Search documents
Embedding黑箱成为历史!这个新框架让模型“先解释,再学Embedding”
量子位· 2025-10-21 09:05
Core Insights - The article introduces GRACE, a new explainable generative embedding framework developed by researchers from multiple universities, aimed at addressing the limitations of traditional text embedding models [1][6]. Group 1: Background and Limitations - Text embedding models have evolved from BERT to various newer models, mapping text into vector spaces for tasks like semantic retrieval and clustering [3]. - A common flaw in these models is treating large language models as "mute encoders," which output vectors without explaining the similarity between texts [4]. - This black-box representation becomes a bottleneck in tasks requiring high interpretability and robustness, such as question-answer matching and cross-domain retrieval [5]. Group 2: GRACE Framework Overview - GRACE transforms "contrastive learning" into "reinforcement learning," redefining the meaning of contrastive learning signals [6]. - The framework emphasizes generating explanations (rationales) for text before learning embeddings, allowing the model to produce logical and semantically consistent reasoning [7][25]. - GRACE consists of three key modules: 1. Rationale-Generating Policy, which generates explanatory reasoning chains for input texts [8]. 2. Representation Extraction, which combines input and rationale to compute final embeddings [9]. 3. Contrastive Rewards, which redefines contrastive learning objectives as a reward function for reinforcement learning updates [11]. Group 3: Training Process - GRACE can be trained in both supervised and unsupervised manners, utilizing labeled query-document pairs and self-alignment techniques [12][18]. - In the supervised phase, the model learns semantic relationships from a dataset of 1.5 million samples [13]. - The unsupervised phase generates multiple rationales for each text, encouraging consistent representations across different explanations [17]. Group 4: Experimental Results - GRACE was evaluated across 56 datasets in various tasks, showing significant performance improvements over baseline models in retrieval, pair classification, and clustering [19][20]. - The results indicate that GRACE not only enhances embedding capabilities without sacrificing generative abilities but also provides transparent representations that can be understood by users [25][27]. Group 5: Conclusion - Overall, GRACE represents a paradigm shift in embedding models, moving towards a framework that can explain its understanding process, thus enhancing both performance and interpretability [28].
BREAKING! SpaceX Crew Dragon GRACE Launches For First Time | AX-4
The Launch Pad· 2025-06-25 07:04
nominal orbital insertion of SpaceX and we add an incredible ride uphill. And now we like to set our course for the International Space Station aboard the newest member of the Dragon Fleet, our spacecraft named Grace. Grace is more than a name.It reflects the elegance with which we move through space against the backdrop of Earth. It speaks to the refinement of our mission, the harmony of science and spirit, and the unmmerited favor we carry with humility. Grace reminds us that spaceflight is not just a fea ...