Hierarchical Reasoning Model (HRM)

Search documents
又是王冠:27M小模型超越o3-mini!拒绝马斯克的00后果然不同
Sou Hu Cai Jing· 2025-08-10 04:21
Core Insights - The article discusses the development of a new AI model called the Hierarchical Reasoning Model (HRM) by Sapient Intelligence, which has achieved superior performance compared to larger models with fewer parameters [3][5][18] - HRM utilizes innovative techniques inspired by brain functions, allowing it to perform complex reasoning tasks efficiently without relying on traditional pre-training methods [4][12][14] Model Performance - HRM, with only 27 million parameters, surpassed larger models like o3-mini-high and Claude 3.7 in various tests, achieving a 40.3% accuracy rate in the ARC-AGI challenge [16][18] - In extreme Sudoku tasks, HRM demonstrated near-perfect accuracy, while traditional models struggled significantly [16][18] Technical Innovations - HRM employs a dual-layer cyclical module design that mimics the brain's hierarchical processing and time-scale separation, enhancing both global direction and local execution efficiency [4][7] - The model incorporates a layered convergence mechanism to avoid premature convergence, allowing it to adaptively set new goals based on high-level updates [9][11] - It utilizes approximate gradient techniques to optimize memory usage and computational efficiency, aligning with biological learning patterns [12] - A deep supervision mechanism is integrated, allowing for periodic evaluations and adjustments during the learning process, which helps in correcting deviations promptly [13][14] Developer Background - The model's creator, Wang Guan, is a young entrepreneur who previously declined offers from major tech figures like Elon Musk, aiming instead to revolutionize AI architecture [20][22] - Wang co-founded Sapient Intelligence in 2024, focusing on developing models with advanced reasoning and planning capabilities [22]