LangChain

Search documents
X @Avi Chawla
Avi Chawla· 2025-07-02 19:45
RT Avi Chawla (@_avichawla)After MCP, A2A, & AG-UI, there's another Agent protocol (open-source).ACP (Agent Communication Protocol) is a standardized, RESTful interface for Agents to discover and coordinate with other Agents, regardless of their framework (CrewAI, LangChain, etc.).Here's how it works:- Build your Agents and host them on ACP servers.- The ACP server will receive requests from the ACP Client and forward them to the Agent.- ACP Client itself can be an Agent to intelligently route requests to t ...
X @Avi Chawla
Avi Chawla· 2025-07-02 06:30
After MCP, A2A, & AG-UI, there's another Agent protocol (open-source).ACP (Agent Communication Protocol) is a standardized, RESTful interface for Agents to discover and coordinate with other Agents, regardless of their framework (CrewAI, LangChain, etc.).Here's how it works:- Build your Agents and host them on ACP servers.- The ACP server will receive requests from the ACP Client and forward them to the Agent.- ACP Client itself can be an Agent to intelligently route requests to the Agents (just like MCP Cl ...
写后端也能很 Vibe?一起从 0 到 1 打造你的 AI 应用!
AI科技大本营· 2025-07-01 06:57
作为一名 Gopher,你是否也曾在深夜看着 Python 生态的繁荣而心生羡慕?当 LangChain、LlamaIndex 等框架层出不穷,我们不禁会想,渴望已久 的、专为 Go 语言打造的顺滑 AI 开发体验,究竟在哪里? 我们常常看到一个个惊艳的 AI 应用,想用自己最熟悉的 Go 来复刻,却发现从 Agent 的定义到复杂的任务编排,每一步都充满着挑战,最终产出 的"胶水代码"也难以维护和扩展,距离一个优雅的生产级应用相去甚远。 字节一线工程师实战开讲 用 Go 语言优雅构建 AI 原生应用 为了实现这场硬核的实战,我们请来了两位身处一线的字节跳动研发工程师,他们将分别扮演"出题人"与"解题人"的角色。Deerflow 的核心开发者将 作为"架构解密官",为你深度剖析其设计理念与实现精髓,揭示如何定义一个强大的 AI Agent。而 Eino 框架的核心开发者则将作为"Go AI应用实战 大师",手把手演示如何运用 Eino,将前者的架构思想,用 Go 语言进行优雅地实现出来。 无论你是渴望在 AI 浪潮中找到核心竞争力的 Go 开发者,或是寻求更高效、更可靠开发框架的 AI/LLM 应用开发者,还 ...
LangChain Academy New Course: Building Ambient Agents with LangGraph
LangChain· 2025-06-26 15:38
Our latest LangChain Academy course – Building Ambient Agents with LangGraph – is now available! Most agents today handle one request at a time through chat interfaces. But as models have improved, agents can now run in the background – and take on long-running, complex tasks. LangGraph is built for these “ambient agents,” with support for human-in-the-loop workflows and memory. LangGraph Platform provides the infrastructure to run these agents at scale, and LangSmith helps you observe, evaluate, and improv ...
Getting Started with LangSmith (1/7): Tracing
LangChain· 2025-06-25 00:47
Hello, my name is Robert and I'm an engineer at Langjang. Welcome to our intro to Langmith. Langmith is an observability and evaluation platform for AI applications.And today we'll be using Langmith to peak under the hood of application that we've made using a feature called tracing. Let's get started. To use Langmith, the first thing you need to do is create an account.I've already connected my Google account, so I'll be using that. Once you've logged into Langmith, you should see a screen that looks like ...
Cisco TAC’s GenAI Transformation: Building Enterprise Support Agents with LangSmith and LangGraph
LangChain· 2025-06-23 15:30
[Music] My name is John Gutsinger. Uh I work for Cisco. I'm a principal engineer and I work in the technical assistance center or TAC for short.Uh really I'm focused on AI engineering, agentic engineering in the face of customer support. We've been doing a IML for you know a couple years now maybe five or six years. really it started with trying to figure out how do we handle these mass scale issues type problems right where uh some trending issues going to pop up we know we're going to have tens of thousan ...
你真的会用DeepSeek么?
Sou Hu Cai Jing· 2025-05-07 04:04
不久前,我们发布了一篇文章《MCP,媲美TCP/IP?》,反响较好。其中,有一个读者的留言,启发了我们: MCP协议、Agent协作、能力注册,AI Agent大潮来袭,普通人如何"上车"? 是啊,在这样一个快速变化的时代,普通人要怎么做,才能不被甩下时代的列车呢? 大模型爆火之后,Prompt成了AI圈的"香饽饽"。 人人都在学提示词技巧,调教DeepSeek、ChatGPT、掌握LangChain、写出像样的函数调用结构,成了AI从业者的新标配。无论是运营、产品、工程师还 是自由职业者,都在追赶这波热潮。 但你是否也开始察觉——焦虑感,正在悄悄蔓延。 "我学了这么多Prompt技巧,怎么感觉用处越来越有限?" | : 突™ 山东 1小时间 | | --- | | " 普通AI行业从业者在这个变革中从何处入口以便后期能更加适配行业工作? 如果现在不学习 | | Prompt技巧,不明确相关任务流程,是否会正式来临面临落伍。 | | 现在学习的这些搭建技巧能否适配后期行业内容? | | 底层普通AI从业人员,好比现在的基础IT运维人员现在应该从哪些方面的技术去做学习铺垫? | | 作者赞过 | "LangCh ...
一堂「强化学习」大师课 | 42章经
42章经· 2025-04-13 12:01
曲凯: 今天我们请来了国内强化学习 (RL) 领域的专家吴翼,吴翼目前是清华大学交叉信息研究院助理教授,他曾经在 OpenAI 工作过,算是国内最早研究强化学 习的人之一,我们今天就争取一起把 RL 这个话题给大家聊透。 首先吴翼能不能简单解释一下,到底什么是 RL? 因此,RL 其实更通用一些,它的逻辑和我们在真实生活中解决问题的逻辑非常接近。比如我要去美国出差,只要最后能顺利往返,中间怎么去机场、选什么航 司、具体坐哪个航班都是开放的。 但 RL 很不一样。 RL 最早是用来打游戏的,而游戏的特点和分类问题有两大区别。 第一,游戏过程中有非常多的动作和决策。比如我们玩一个打乒乓球的游戏,发球、接球、回球,每一个动作都是非标的,而且不同的选择会直接影响最终的结 果。 第二,赢得一场游戏的方式可能有上万种,并没有唯一的标准答案。 所以 RL 是一套用于解决多步决策问题的算法框架。它要解决的问题没有标准答案,每一步的具体决策也不受约束,但当完成所有决策后,会有一个反馈机制来评 判它最终做得好还是不好。 吴翼: RL 是机器学习这个大概念下一类比较特殊的问题。 传统机器学习的本质是记住大量标注过正确答案的数据对。 ...