Workflow
Mercury Coder Mini
icon
Search documents
扩散语言模型写代码!速度比自回归快10倍
量子位· 2025-07-10 03:19
Core Viewpoint - The article discusses the launch of Mercury, a new commercial-grade large language model based on diffusion technology, which can generate code at a significantly faster rate than traditional models. Group 1: Model Innovation - Mercury breaks the limitations of autoregressive models by predicting all tokens at once, enhancing generation speed [2] - The model allows for dynamic error correction during the generation process, providing greater flexibility compared to traditional models [4][20] - Despite using diffusion technology, Mercury retains the Transformer architecture, enabling the reuse of efficient training and inference optimization techniques [6][7] Group 2: Performance Metrics - Mercury's code generation speed can be up to 10 times faster than traditional tools, significantly reducing development cycles [8] - On H100 GPUs, Mercury achieves a throughput of 1109 tokens per second, showcasing its efficient use of hardware [9][13] - In benchmark tests, Mercury Coder Mini and Small achieved response times of 0.25 seconds and 0.31 seconds, respectively, outperforming many competitors [16] Group 3: Error Correction and Flexibility - The model incorporates a real-time error correction module that detects and corrects logical flaws in code during the denoising steps [21] - Mercury integrates abstract syntax trees (AST) from programming languages like Python and Java to minimize syntax errors [22] Group 4: Development Team - Inception Labs, the developer of Mercury, consists of a team of experts from prestigious institutions, including Stanford and UCLA, with a focus on improving model performance using diffusion technology [29][34]