Workflow
自回归模型
icon
Search documents
从300多篇工作中,看VLA在不同场景下的应用和实现......
具身智能之心· 2025-09-25 04:00
点击下方 卡片 ,关注" 具身智能 之心 "公众号 编辑丨具身智能之心 本文只做学术分享,如有侵权,联系删文 >> 点击进入→ 具身智能之心 技术交流群 更多干货,欢迎加入国内首个具身智能全栈学习社区 : 具身智能之心知识星球 (戳我) , 这里包含所有你想要的。 兰州大学、中科院、新加坡国立等单位联合出品的一篇最新survey! Pure Vision Language Action (VLA) Models: A Comprehensive Survey 论文链接:https://arxiv.org/pdf/2509.19012 视觉-语言-动作(Vision Language Action, VLA)模型的出现,标志着机器人技术从传统基于策略的控制向通用机器人技术的范式转变,同时也将视觉- 语言模型(Vision Language Models, VLMs)从被动的序列生成器重新定位为在复杂、动态环境中执行操作与决策的主动智能体。 机器人技术长期以来一直是科学研究的重要领域。在历史发展进程中,机器人主要依赖预编程指令和设计好的控制策略来完成任务分解与执行。这些 方法通常应用于简单、重复性的任务,例如工厂 ...
深度综述 | 300+论文带你看懂:纯视觉如何将VLA推向自动驾驶和具身智能巅峰!
自动驾驶之心· 2025-09-24 23:33
视觉-语言-动作(Vision Language Action, VLA)模型的出现,标志着机器人技术从传统基于策略的控制向通用机器人技术的范式转变,同时也将视觉-语言模型(Vision Language Models, VLMs)从被动的序列生成器重新定位为在复杂、动态环境中执行操作与决策的主动智能体。 为此,兰州大学、中科院和新加坡国立大学的团队深入探讨了先进的VLA方法,旨在提供清晰的分类体系,并对现有研究进行系统、全面的综述。文中全面分析了VLA 在不同场景下的应用,并将VLA方法划分为多个范式: 自回归、扩散模型、强化学习、混合方法及专用方法 ;同时详细探讨了这些方法的设计动机、核心策略与实现方 式。 此外,本文还介绍了VLA研究所需的基础数据集、基准测试集与仿真平台。基于当前VLA研究现状,综述进一步提出了该领域面临的关键挑战与未来发展方向,以推动 VLA模型与通用机器人技术的研究进展。通过综合300多项最新研究的见解,本综述勾勒出这一快速发展领域的研究轮廓,并强调了将塑造可扩展、通用型VLA方法发 展的机遇与挑战。 论文标题:Pure Vision Language Action (VLA) M ...
扩散语言模型也有MoE版本了!蚂蚁&人大从头训练LLaDA-MoE,即将完全开源
机器之心· 2025-09-12 11:31
Core Viewpoint - The article discusses the development of the LLaDA-MoE model, the first native MoE architecture diffusion language model trained from scratch, which demonstrates significant performance and efficiency advantages over traditional autoregressive models [2][15][18]. Group 1: Model Development and Performance - The LLaDA-MoE model was trained on 20 terabytes of data and features 1.4 billion active parameters, achieving performance comparable to denser autoregressive models like Qwen2.5-3B while maintaining faster inference speeds [15][17][29]. - The LLaDA series has rapidly evolved, with LLaDA-MoE being a notable milestone, surpassing previous models like LLaDA1.0/1.5 and Dream-7B in various benchmark tests [13][18][29]. - The model's architecture allows for significant scaling potential, with plans to explore higher sparsity ratios and larger MoE diffusion language models [29][40]. Group 2: Technical Innovations and Advantages - The diffusion model approach allows for parallel decoding, bidirectional modeling, and iterative correction, addressing limitations of autoregressive models such as serial bottlenecks and lack of error correction capabilities [38][40]. - Evidence suggests that diffusion language models can achieve better learning outcomes than autoregressive models, particularly in scenarios with limited data, demonstrating a data utilization efficiency that can exceed three times that of autoregressive models [40][41]. - The training framework and infrastructure developed by Ant Group, including the ATorch framework, supports the efficient training of large-scale MoE models [25][26]. Group 3: Strategic Vision and Future Directions - The development of LLaDA-MoE reflects a strategic choice to explore high-potential areas in AI, moving beyond established paths to enhance the limits of intelligence [44][47]. - Ant Group's commitment to innovation is evident in its previous projects and ongoing research in areas like dynamic MoE architectures and hybrid linear architectures, all aimed at achieving general artificial intelligence (AGI) [45][46][47].
NextStep-1:一次在图像生成上自回归范式的探索
机器之心· 2025-08-18 05:15
Core Insights - The article discusses the development of NextStep-1, a new autoregressive model for image generation that operates directly in continuous visual space, avoiding the information loss associated with discretization [2][3][4] - The model utilizes a lightweight Flow Matching Head, which simplifies the architecture and allows for end-to-end training without reliance on external diffusion models [4][5] - The exploration aims to provide a new perspective in the multimodal generation field, emphasizing the potential for creating efficient and high-fidelity generative models [26][33] Technical Framework - NextStep-1 is built on a powerful Transformer backbone network with 14 billion parameters, complemented by a Flow Matching Head with 157 million parameters for generating continuous image patches [7][8] - The model generates images autoregressively by producing patches sequentially, which helps bypass the bottleneck of discretization [8] - The architecture is designed to be simple and pure, demonstrating that a streamlined autoregressive model can be constructed without sacrificing continuity [4][26] Key Discoveries - The team identified that the Transformer acts as the main creator, while the Flow Matching Head serves as an efficient sampler, with minimal impact on image quality from the size of the Flow Matching Head [12] - Two critical techniques were discovered for stability and quality: channel-wise normalization to stabilize token statistics and the counterintuitive finding that adding more noise during training can enhance image quality [14][16] Performance Evaluation - NextStep-1 has been rigorously evaluated against industry benchmarks, achieving competitive results with state-of-the-art diffusion models [21][22] - The model's performance metrics include GenEval scores of 0.63/0.737 and DPG-Bench scores of 85.28, indicating its strong capabilities in image generation [21][22] Limitations and Future Directions - The model faces challenges related to stability during generation, particularly when expanding the latent space dimensions, which can lead to occasional failures [27][29] - The autoregressive nature of the model introduces latency issues, particularly in sequential decoding, which affects overall performance [28] - Future work will focus on optimizing the Flow Matching Head, accelerating the autoregressive backbone, and improving convergence efficiency, especially in high-resolution image generation [34][35]
Lumina-mGPT 2.0:自回归模型华丽复兴,媲美顶尖扩散模型
机器之心· 2025-08-12 00:15
Core Viewpoint - Lumina-mGPT 2.0 is an innovative stand-alone autoregressive image model that integrates various tasks such as text-to-image generation, subject-driven generation, and controllable generation, showcasing significant advancements in image generation technology [5][9][21]. Group 1: Core Technology and Breakthroughs - Lumina-mGPT 2.0 employs a fully independent training architecture, utilizing a pure decoder Transformer model, which allows for two parameter versions (2 billion and 7 billion) and avoids biases from pre-trained models [4][5]. - The model incorporates a high-quality image tokenizer, SBER-MoVQGAN, which was selected based on its optimal reconstruction quality on the MS-COCO dataset [7]. - A unified multi-task processing framework is introduced, enabling seamless support for various tasks including text-to-image generation and image editing [9]. Group 2: Efficient Inference Strategies - The model introduces two optimizations to enhance generation speed while maintaining quality, including model quantization to 4-bit integers and a sampling method that reduces GPU memory consumption by 60% [11][13]. - The optimizations allow for parallel decoding, significantly accelerating the generation process [13]. Group 3: Experimental Results - In text-to-image generation benchmarks, Lumina-mGPT 2.0 achieved a GenEval score of 0.80, ranking it among the top generative models, particularly excelling in tests involving "two objects" and "color attributes" [14][15]. - The model demonstrated superior performance in the Graph200K multi-task benchmark, confirming the feasibility of a pure autoregressive model for multi-modal generation tasks [17]. Group 4: Future Directions - Despite optimizations, Lumina-mGPT 2.0 still faces challenges with sampling time, which affects user experience, indicating a need for further enhancements [21]. - The focus will expand from multi-modal generation to include multi-modal understanding, aiming to improve overall functionality and performance [21].
自回归模型杀回图像生成!实现像素级精准控制,比Diffusion更高效可控
量子位· 2025-07-29 05:05
Core Viewpoint - The article discusses the limitations of Diffusion models in AI image generation, particularly in precise control, and introduces a new framework called MENTOR, which utilizes Autoregressive (AR) models for more efficient and controllable multimodal image generation [1][2][3]. Group 1: Challenges in Current Models - Diffusion models face challenges in precise visual control, balancing multimodal inputs, and high training costs [2][6]. - The inherent randomness of Diffusion models makes it difficult to achieve precise control in high-fidelity tasks like image reconstruction [6]. - Existing methods often exhibit modality imbalance, over-relying on either reference images or text instructions [6]. Group 2: Introduction of MENTOR - MENTOR is a novel AR framework that requires only one-tenth of the training data and suboptimal model components to outperform Diffusion methods like Emu2 and DreamEngine [2][3]. - The framework employs a unique two-stage training method to enable efficient multimodal image generation with pixel-level precision [3][8]. Group 3: MENTOR's Design and Training - MENTOR features a unified AR architecture consisting of a multimodal encoder and an autoregressive generator, allowing for token-level alignment between inputs and outputs [9]. - The two-stage training strategy includes: 1. Multimodal Alignment Pretraining: Focuses on understanding different input types and establishing pixel-level and semantic alignment [10]. 2. Multimodal Instruction Tuning: Enhances the model's ability to follow instructions and reason across modalities [12]. Group 4: Performance and Efficiency - MENTOR achieved competitive performance on DreamBench++, surpassing larger models like Emu2 (37 billion parameters) and DreamEngine (10.5 billion parameters) while maintaining a lower CP/PF ratio, indicating better balance between visual feature preservation and prompt following [15][17]. - The training process for MENTOR utilized approximately 3 million image-text pairs over 1.5 days, demonstrating significant efficiency compared to other baseline methods [18]. Group 5: Applications and Future Potential - MENTOR's framework is highly versatile, capable of handling various complex multimodal generation tasks with minimal adjustments [24]. - The article concludes that MENTOR opens a new path for controllable image generation tasks, showcasing the potential of AR models in visual generation, while acknowledging that there are still areas where it lags behind top-tier Diffusion models [26].
五倍推理加速,激发自回归潜能,苹果新工作让LLM预测未来
机器之心· 2025-07-24 04:08
Core Viewpoint - The article discusses the advancements in language models, particularly focusing on a new framework developed by Apple researchers that allows autoregressive models to perform multi-token predictions, significantly improving inference speed while maintaining generation quality [7][8][9]. Group 1: Advances in Language Models - Recent progress in language models is attributed to the availability of large-scale text data and the effectiveness of autoregressive training methods [2]. - Autoregressive models predict each token based on preceding context, which provides a clear advantage during training but incurs high computational costs during inference due to sequential execution [5][6]. Group 2: New Framework Development - Apple researchers have developed a framework that enables pre-trained autoregressive language models to execute multi-token predictions, achieving up to 5.35 times speedup for code and math tasks, and approximately 2.5 times for general tasks [7]. - This innovation allows for a significant reduction in AI operational costs and the potential for powerful real-time assistants to run smoothly on lightweight devices [9]. Group 3: Research Findings - The researchers confirmed that language models can generate multiple tokens in a single inference step, which is a promising development for speeding up generation processes [11]. - The study explored whether it is possible to train truly non-autoregressive language models, leading to the design of a training algorithm that minimally alters existing autoregressive frameworks while achieving efficient multi-token generation [13][14]. Group 4: Experimental Results - Experiments conducted on the Tulu3-8B model demonstrated that the proposed multi-token generation algorithm achieved speedups ranging from approximately 1.5 to 5.2 times across various tasks, with the most significant improvements observed in programming and math tasks [46]. - The introduction of mask tokens and a lightweight sampling module allowed the model to leverage its full depth and representational capabilities, resulting in superior performance compared to existing multi-token prediction methods [23][24]. Group 5: Future Directions - Future research could explore the applicability of this method during pre-training or downstream task adaptation phases to further assess its effectiveness [53]. - Another promising direction is the application of diffusion-based generation methods to multi-token prediction tasks, aiming to balance efficiency and quality [53].
扩散语言模型写代码!速度比自回归快10倍
量子位· 2025-07-10 03:19
Core Viewpoint - The article discusses the launch of Mercury, a new commercial-grade large language model based on diffusion technology, which can generate code at a significantly faster rate than traditional models. Group 1: Model Innovation - Mercury breaks the limitations of autoregressive models by predicting all tokens at once, enhancing generation speed [2] - The model allows for dynamic error correction during the generation process, providing greater flexibility compared to traditional models [4][20] - Despite using diffusion technology, Mercury retains the Transformer architecture, enabling the reuse of efficient training and inference optimization techniques [6][7] Group 2: Performance Metrics - Mercury's code generation speed can be up to 10 times faster than traditional tools, significantly reducing development cycles [8] - On H100 GPUs, Mercury achieves a throughput of 1109 tokens per second, showcasing its efficient use of hardware [9][13] - In benchmark tests, Mercury Coder Mini and Small achieved response times of 0.25 seconds and 0.31 seconds, respectively, outperforming many competitors [16] Group 3: Error Correction and Flexibility - The model incorporates a real-time error correction module that detects and corrects logical flaws in code during the denoising steps [21] - Mercury integrates abstract syntax trees (AST) from programming languages like Python and Java to minimize syntax errors [22] Group 4: Development Team - Inception Labs, the developer of Mercury, consists of a team of experts from prestigious institutions, including Stanford and UCLA, with a focus on improving model performance using diffusion technology [29][34]
首次!世界模型、动作模型融合,全自回归模型WorldVLA来了
机器之心· 2025-07-03 08:01
Core Viewpoint - Alibaba's Damo Academy has introduced WorldVLA, a model that integrates World Model and Action Model into a unified autoregressive framework, enhancing understanding and generation across text, images, and actions [1][4]. Summary by Sections Research Overview - The development of Vision-Language-Action (VLA) models has become a significant focus in robotic action modeling, typically built on large-scale pretrained multimodal language models (MLLMs) with added action output capabilities [4]. - Existing VLA models often lack a deep understanding of actions, treating them merely as output rather than analyzing them as input [5]. Model Description - WorldVLA addresses the limitations of both VLA and World Models by using a unified autoregressive mechanism for action and image understanding and generation [5][10]. - It employs three independent encoders for processing images, text, and action data, sharing the same vocabulary to facilitate cross-modal tasks [12]. Mechanism and Strategy - The World Model component generates visual representations based on input actions, learning the physical dynamics of the environment, while the Action Model enhances visual understanding [7]. - An action attention masking strategy is introduced to mitigate error accumulation during the generation of multiple actions, significantly improving performance in action chunking tasks [8][14]. Experimental Results - In the LIBERO benchmark, WorldVLA achieved a 4% improvement in grasp success rate compared to traditional action models and a 10% reduction in Fréchet Video Distance (FVD) compared to traditional world models [8]. - The introduction of the attention mask strategy led to a performance improvement in grasp success rates ranging from 4% to 23% in action chunking tasks [8]. Comparative Analysis - WorldVLA outperformed other models in various metrics, demonstrating its effectiveness in integrating action and world modeling [18]. - The model's ability to generate the next frame based on actions and images showcases its advanced capabilities in visual prediction [24].
冲击自回归,扩散模型正在改写下一代通用模型范式
机器之心· 2025-06-04 01:59
Core Viewpoint - The article discusses the advancements in diffusion language models (dLLMs), particularly focusing on Google's Gemini Diffusion and its implications for AI development, highlighting the speed and performance improvements over traditional autoregressive models [1][8][35]. Group 1: Gemini Diffusion and Its Features - Gemini Diffusion is noted for its impressive generation speed, being five times faster than previous models, and its ability to handle programming tasks effectively [2][8]. - The underlying mechanism of diffusion models allows for rapid iteration and error correction during the generation process, distinguishing it from autoregressive models [2][3]. - Gemini Diffusion's sampling speed can reach an astonishing 1479 tokens per second, showcasing its potential in various benchmarks [8][9]. Group 2: Development of Diffusion Language Models - Prior to Gemini Diffusion, several research teams explored the feasibility of diffusion-based LLMs, including Stanford's Diffusion-LM and Fudan University's DiffusionBERT [3][4]. - The introduction of LLaDA, the first 8 billion parameter diffusion language model, marked a significant milestone in the field, achieving performance comparable to LLaMA 3 [4][21]. - Following LLaDA, other models like d1 and LaViDa have emerged, further establishing LLaDA as a foundational model in dLLM research [20][21]. Group 3: Multimodal Diffusion Language Models - The emergence of diffusion multimodal language models (dMLLMs) is highlighted, with LLaDA-V and MMaDA being prominent examples that integrate visual and language processing capabilities [10][31]. - LLaDA-V combines visual instruction fine-tuning with the diffusion mechanism, demonstrating strong performance in multimodal understanding tasks [26][27]. - MMaDA showcases innovations in text reasoning and multimodal understanding, solidifying its position as a leading research outcome in the dMLLM space [31][32]. Group 4: Future Directions and Implications - The article emphasizes the shift from autoregressive models to diffusion models as a significant paradigm change in AI, suggesting broader implications for future research and applications [35][36]. - The ongoing evolution of models like LLaDA and Gemini Diffusion indicates a growing ecosystem around dLLMs and dMLLMs, with potential applications extending into quantum computing [35][36].