Workflow
VLA自动驾驶模型
icon
Search documents
当前的自动驾驶VLA,还有很多模块需要优化...
自动驾驶之心· 2025-09-18 11:00
点击咨询匹配大牛导师 1. 传统模块化架构的时代: 早期的自动驾驶系统(L2-L4级)普遍采用模块化设计。每个模块(如 物体检测、轨迹预测、路径规划)被独立开发和优化。 优势: 逻辑清晰,各模块可独立调试和 验证,具有较好的可解释性。 瓶颈: 错误累积效应: 上游模块的微小误差会逐级传递并放大, 影响最终决策。 信息损失: 在模块间传递的结构化数据(如3D框、轨迹点)会损失原始传感器 信息中的丰富细节。 规则的局限性: 依赖大量人工设计的规则和参数,难以应对复杂、长尾的 交通场景(Corner Cases)。 2. 纯视觉端到端(模仿学习)的兴起: 以NVIDIA的DAVE-2、Wayve等为代表,研究者们尝试使用 深度神经网络,通过模仿学习(Imitation Learning)的方式,直接从人类驾驶员的驾驶视频和操 作数据中学习"像素到行为"的映射。 优势: 简化了系统架构,能从数据中自动学习复杂的驾驶 策略,无需繁琐的规则设计。 瓶颈: "黑箱"问题与可解释性差: 模型决策过程不透明,难以理 解其做出特定行为的原因,这对于安全至关重要的自动驾驶是致命缺陷。 因果混淆(Causal VLA绝对是今年自动驾 ...
作为研究,VLA至少提供了一种摆脱无尽corner case的可能性!
自动驾驶之心· 2025-09-15 03:56
VLA绝对是今年自动驾驶的主流关键词,下半年新势力都在抢滩VLA的高地,工业界快速量产上 车,学术界不断刷新比赛榜单。 以往,业内迭代的方案都是增加issue case删除issue case的循环,而 这种方案显然是无穷无尽的,哪怕这个方案迭代的再成熟,也难以达到我们理想中那种自驾的水 准。 相比于端到端, 利用大模型更强的泛化能力, VLA至少提供了一种摆脱无尽corner case的可能性! 然而VLA并不是那么好做的,对于一个新手或者转行的同学,开展研究蛮难受的。踩了一年坑,也 不一定能有效果。这时候,峰哥给他推荐了自动驾驶之心的1v6论文辅导。 ⼀、VLA科研论文辅导课题来啦⭐ 端到端(End-to-End)自动驾驶旨在构建一个统一的智能模型,直接将传感器原始输入(如摄像头图 像)映射到车辆的驾驶控制指令(如转向、油门、刹车),从而替代传统的多模块、级联式架构 (感知、预测、规划、控制)。这一演进过程大致可分为以下几个阶段,而VLA模型的出现正是为 了解决前序阶段的瓶颈,标志着一个新范式的开启。 刹车",而不是理解"前车减速,所以要刹车"。 泛化能力受限: 对于训练数据中未出现过的长尾 场景,模型表 ...