Zep

Search documents
X @Avi Chawla
Avi Chawla· 2025-09-11 06:33
In the project, we used:1) Tensorlake:- It lets you transform any unstructured doc into AI-ready data.- https://t.co/AMl8cnhtGZ2) Zep- It lets you build human-like memory for your Agents.- https://t.co/aFsgR0kqlu3) Firecrawl- It lets you power LLM apps with clean data from the web.- https://t.co/QYY3IOy7NL4) Milvus- It gives a high-performance vector DB for scalable vector search.- https://t.co/DFFDMfRDmY ...
X @Avi Chawla
Avi Chawla· 2025-08-10 19:31
RT Avi Chawla (@_avichawla)Build human-like memory for your Agents (open-source)!Every agentic and RAG system struggles with real-time knowledge updates and fast data retrieval.Zep solves these issues with its continuously evolving and temporally-aware Knowledge Graph.Like humans, Zep organizes an Agent's memories into episodes, extracts entities and their relationships from these episodes, and stores them in a knowledge graph:(refer to the image below as you read)1) Episode Subgraph: Captures raw data with ...
X @Avi Chawla
Avi Chawla· 2025-08-10 06:33
Build human-like memory for your Agents (open-source)!Every agentic and RAG system struggles with real-time knowledge updates and fast data retrieval.Zep solves these issues with its continuously evolving and temporally-aware Knowledge Graph.Like humans, Zep organizes an Agent's memories into episodes, extracts entities and their relationships from these episodes, and stores them in a knowledge graph:(refer to the image below as you read)1) Episode Subgraph: Captures raw data with timestamps, retaining ever ...
Stop Using RAG as Memory — Daniel Chalef, Zep
AI Engineer· 2025-07-22 16:00
Problem Statement & Solution - Current memory frameworks struggle with relevance, leading to inaccurate responses or hallucinations due to the storage of arbitrary facts [3][4][5] - Semantic similarity does not equate to business relevance, as vector databases lack causal or relational understanding [7] - The industry needs domain-aware memory solutions instead of relying solely on better semantic search [8] - Zep offers a solution by enabling developers to model memory after their specific business domain, creating more cogent and capable memory [1][2] Zep's Implementation & Features - Zep allows developers to define custom entities and edges within its graph framework, tailoring memory to specific business objects [1][9] - Developers can use Pydantic, Zod, or Go structs to define business rules for these entities and their fields [9][10] - Zep's SDK allows defining entity types with descriptions and business rules for fields, enabling precise control over data stored [10] - Zep allows building tools for agents to retrieve financial snapshots by running multiple searches concurrently and filtering by specific node types [10][11] - Zep's front end provides a knowledge graph visualization, allowing users to see the relationships and fields defined for each entity [12] Demonstration & Use Case - A finance coach application demonstrates Zep's ability to store explicit business objects like financial goals, debts, and income sources [8][9] - The application captures relevant information, such as a $5,000 monthly rent, and stores it as a debt account entity with defined fields [11][12]