儿童交替性偏瘫(AHC)

Search documents
Cell:先导编辑里程碑!刘如谦团队利用体内先导编辑成功治疗儿童脑病
生物世界· 2025-07-22 03:27
Core Viewpoint - Alternating Hemiplegia of Childhood (AHC) is a rare neurodevelopmental disorder with no current treatment to alter its progression, primarily linked to mutations in the ATP1A3 gene, which accounts for approximately 70% of cases [2][6]. Group 1: Disease Overview - AHC manifests within the first 18 months of life, characterized by recurrent symptoms such as hemiplegia, muscle tone disorders, abnormal eye movements, and seizures, along with developmental delays and intellectual disabilities [1][6]. - The ATP1A3 gene encodes the α3 subunit of the Na+/K+-ATPase, crucial for neuronal function, and its dysfunction leads to neuronal hyperexcitability and metabolic imbalances [2]. Group 2: Genetic Insights - Over 50 pathogenic mutations related to AHC have been reported, with three mutations (D801N, E815K, G947R) accounting for over 65% of cases [2]. - The dominant-negative disease mechanism of ATP1A3 mutations complicates traditional gene therapy approaches, as these mutations not only lose function but also interfere with normal protein function [2]. Group 3: Research Breakthroughs - A study published on July 21, 2025, in the journal Cell demonstrated the use of prime editing technology to treat AHC in mouse models, effectively correcting common ATP1A3 mutations and restoring Na+/K+ ATPase activity [3][4]. - The research team achieved correction rates of 48% at the DNA level and 73% at the mRNA level in the brain cortex of treated mice, leading to significant improvements in seizure activity, motor deficits, and cognitive impairments, as well as extended lifespan [9][12]. Group 4: Future Implications - The findings suggest that prime editing could serve as a one-time therapeutic approach for AHC, potentially opening avenues for treating other long-considered untreatable neurological disorders [4][11]. - The study emphasizes the importance of patient-centered research, as highlighted by the involvement of RARE Hope's founder, who advocates for increased accessibility to treatments for rare neurological conditions [11].