Workflow
内存内/近内存计算
icon
Search documents
eNVM,作用巨大
半导体芯闻· 2025-11-07 10:24
Core Insights - The article emphasizes the rapid development of embedded non-volatile memory (eNVM) as a foundational technology in the AI era, highlighting its critical role in various applications from microcontrollers (MCUs) to automotive controllers and security components [2][4]. Market Overview and Growth - Emerging embedded non-volatile memories, including MRAM, RRAM/ReRAM, and PCM, are entering a broader adoption phase, particularly in microcontrollers, connectivity, and edge AI devices, with strong momentum in automotive and industrial markets. Yole Group projects that by 2030, the embedded emerging memory market will exceed $3 billion, driven by increased availability in mainstream process nodes and strong demand for NVM in areas where eFlash is no longer suitable [4][8]. Technological Advancements - Embedded flash (eFlash) remains foundational, but limitations in size scaling at advanced nodes have pushed MRAM, ReRAM, and embedded PCM to the forefront. Foundries and integrated device manufacturers (IDMs) are expanding embedded options from 28/22 nm planar CMOS to 10–12 nm platforms, including FinFET. TSMC has established high-volume production for MRAM/ReRAM and is preparing for 12nm FinFET ReRAM/MRAM beyond 2025. Other companies like Samsung, GlobalFoundries, UMC, and SMIC are accelerating the adoption of embedded MRAM/ReRAM/PCM in general MCUs and high-performance automotive designs [6][7]. Drivers, Challenges, and Use Cases - The automotive sector remains a focal point for emerging embedded NVM, with significant increases in applications for safety ICs and industrial microcontrollers expected by 2025. ReRAM, MRAM, and PCM each play distinct roles, with ReRAM gaining attention in high-volume categories, while MRAM and PCM are attractive for speed and durability applications. Challenges include integrating eNVM at advanced logic nodes, balancing durability and data retention, achieving automotive-grade reliability certification, and maintaining cost-effective density as embedded code and AI parameters grow. However, trends are positive, with increasing availability of PDK/IP and rising capacity addressing these issues [8][9]. Future Outlook - By 2030, embedded NVM is expected to support more on-chip AI functionalities and practical in-memory/near-memory computing modules, with broader applications in edge neuromorphic-inspired accelerators. Yole's forecasts indicate that the embedded emerging memory sector is now a primary growth engine, with ReRAM leading in high-volume microcontrollers and analog ICs, while MRAM and embedded PCM solidify their positions in performance-critical niche markets. As edge data grows, the role of eNVM is evolving from mere storage to becoming an integral part of computing architectures, redefining efficiency and making embedded memory more central to device intelligence than ever before [9].