分块强化学习

Search documents
成功率提高57%,VLA+RL最新!CO-RFT:实现VLA模型的高效微调(北航&清华等)
具身智能之心· 2025-08-07 00:03
Core Insights - The article discusses the development of a new reinforcement learning framework called Chunked RL, specifically designed for fine-tuning Vision-Language-Action (VLA) models, which show great potential in real-world robotic control [4][8]. - The proposed CO-RFT algorithm demonstrates significant improvements over traditional supervised fine-tuning methods, achieving a 57% increase in success rate and a 22.3% reduction in cycle time in real-world environments [4][29]. Section Summaries Introduction - VLA models integrate perception and language understanding for embodied control, showing promise in developing general strategies for real-world robotic control [6]. - The challenges faced in fine-tuning VLA models primarily stem from the dependency on the quality and quantity of task-specific data, which limits generalization to out-of-distribution (OOD) scenarios [6][7]. Methodology - The article introduces Chunked RL, a novel reinforcement learning framework that incorporates action chunking to enhance sample efficiency and stability, particularly suited for VLA models [8][12]. - The CO-RFT algorithm consists of two phases: imitation learning for initializing the backbone network and policy, followed by offline RL with action chunking to optimize the pre-trained policy [16][18]. Experimental Analysis - The experiments were conducted on a robotic platform with six dexterous manipulation tasks, evaluating the performance of the CO-RFT algorithm against traditional methods [20][23]. - Results indicate that CO-RFT significantly outperforms supervised fine-tuning (SFT), achieving a 57% increase in success rate and a 22.3% decrease in average cycle time across various tasks [29][30]. Position Generalization - CO-RFT exhibits strong position generalization capabilities, achieving a 44.3% success rate in previously unseen locations, outperforming SFT by 38% in OOD scenarios [4][29]. Importance of Data Diversity - Data diversity plays a crucial role in the performance of CO-RFT, with models trained on diverse datasets showing significantly better generalization capabilities compared to those trained on fixed datasets [32][33].