动捕

Search documents
具身数采方案一览!遥操作和动捕的方式、难点和挑战(2w字干货分享)
自动驾驶之心· 2025-07-10 12:40
Core Viewpoint - The article discusses the significance of remote operation (遥操作) in the context of embodied intelligence, emphasizing its historical roots and contemporary relevance in robotics and data collection [3][15][17]. Group 1: Understanding Remote Operation - Remote operation is not a new concept; it has been around for decades, primarily in military and aerospace applications [8][10]. - Examples of remote operation include surgical robots and remote-controlled excavators, showcasing its practical applications [8][10]. - The ideal remote operation involves spatial separation, allowing operators to control robots from a distance, thus creating value through this separation [10][15]. Group 2: Remote Operation Experience - Various types of remote operation experiences were shared, with a focus on the comfort level of different methods [19][20]. - The most comfortable method identified is pure visual inverse kinematics (IK), which allows for greater freedom of movement compared to rigid control systems [30][28]. Group 3: Future of Remote Operation - The discussion includes visions for future remote operation systems, highlighting the need for a complete control loop involving both human-to-machine and machine-to-human interactions [33][34]. - The potential for pure virtual and pure physical solutions was explored, suggesting that future systems may integrate both approaches for optimal user experience [37][39]. Group 4: Data Collection and Its Importance - Remote operation is crucial for data collection, which is essential for training robots to mimic human actions [55][64]. - The concept of "borrowing to repair the truth" was introduced, indicating that advancements in remote operation are driven by the need for better data collection in robotics [64][65]. Group 5: Implications for Robotics - The emergence of the "robot cockpit" concept indicates a trend towards more intuitive control systems for robots, integrating various functionalities into a cohesive interface [67][70]. - The challenges of controlling multiple joints in robots were discussed, emphasizing the need for innovative hardware and interaction designs to manage complex operations [68][70]. Group 6: Motion Capture and Its Challenges - Motion capture systems are essential for remote operation, but they face challenges such as precision and the need for complex setups [93][95]. - The discussion highlighted the importance of human adaptability in using motion capture systems, suggesting that users can adjust to various input methods effectively [80][81]. Group 7: ALOHA System Innovations - The ALOHA system represents a significant innovation in remote operation, focusing on minimal hardware configurations and end-to-end algorithm frameworks [102][104]. - This system has prompted the industry to rethink robot design and operational paradigms, indicating its potential long-term impact [103][104].