场景重建
Search documents
摸底GS重建在自动驾驶业内的岗位需求
自动驾驶之心· 2026-01-24 02:55
Core Viewpoint - The article discusses the growing demand for algorithm teams in the field of 3DGS (3D Gaussian Splatting) for autonomous driving, highlighting the need for skilled professionals and the development of a comprehensive training course to address this gap [2][3]. Group 1: Industry Demand and Job Roles - Companies are looking to invest in headcount (HC) for testing and closed-loop simulation in the autonomous driving sector, indicating a clear need for algorithm teams ranging from 5 to 20 members to support optimization in closed-loop simulations [2][3]. - The demand for cloud data production is also noted, particularly for static road surface reconstruction, which requires a minimum team size of around 10 people to meet basic functional needs [3]. Group 2: 3DGS Development and Learning Path - The article outlines a structured learning path for 3DGS, starting from static reconstruction to dynamic reconstruction and surface reconstruction, culminating in mixed scene reconstruction and feed-forward GS [3]. - A course titled "3DGS Theory and Algorithm Practical Tutorial" has been developed to provide a detailed roadmap for understanding 3DGS technology, covering principles and practical applications [3]. Group 3: Course Structure and Content - The course consists of six chapters, covering topics such as background knowledge, principles and algorithms of 3DGS, technical explanations for autonomous driving, important research directions, and feed-forward 3DGS [6][8][9][10][11][12]. - Each chapter is designed to build upon the previous one, ensuring a comprehensive understanding of 3DGS and its applications in the industry [8][9][10][11][12]. Group 4: Target Audience and Prerequisites - The course is aimed at individuals with a background in computer graphics, visual reconstruction, and related technologies, as well as those familiar with Python and PyTorch [17]. - Participants are expected to have a foundational understanding of probability theory and linear algebra, which are essential for mastering the 3DGS technology stack [17].
ICCV 2025!复旦BezierGS:利用贝塞尔曲线实现极简标注驾驶场景SOTA重建~
自动驾驶之心· 2025-06-30 12:33
点击下方 卡片 ,关注" 自动驾驶之心 "公众号 戳我-> 领取 自动驾驶近15个 方向 学习 路线 今天自动驾驶之心为大家分享 复旦大学ICCV2025中稿的最新工作! BezierGS:基于贝塞尔曲线高斯泼溅的动态城市场景重建! 如 果您有相关工作需要分享,请在文末联系我们! 自动驾驶课程学习与技术交流群事宜,也欢迎添加小助理微信AIDriver004做进一步咨询 >>自动驾驶前沿信息获取 → 自动驾驶之心知识星球 论文作者 | Zipei Ma等 编辑 | 自动驾驶之心 1. 构建一个高质量街景世界,供自驾模型在其中训练、探索,减少数据采集的成本; 2. 减少对bounding box精确性的依赖,目前业界以及开源自驾数据集采集的准确性不是很高,bounding box的标注不精确; 3. 这篇是对自驾世界的学习与探索,未来会探索一个真正的自驾世界模型,该工作只能实现轨迹内插,无法轨迹外插。 论文链接:https://arxiv.org/abs/2506.22099 代码代码:https://github.com/fudan-zvg/BezierGS 随着需要实时传感器反馈的端到端自动驾驶系统的兴起,现 ...