贝塞尔曲线
Search documents
复旦最新BezierGS:贝塞尔曲线实现驾驶场景重建SOTA(ICCV'25)
自动驾驶之心· 2025-07-23 09:56
Core Insights - The article discusses the latest work from Fudan University on a method called BezierGS, which utilizes Bezier curves for dynamic urban scene reconstruction, crucial for developing closed-loop simulations in autonomous driving [5][6]. Group 1: Methodology and Contributions - BezierGS addresses the limitations of existing methods that rely on precise pose annotations for dynamic targets, which restricts large-scale scene reconstruction [5][8]. - The method employs learnable Bezier curves to represent the motion trajectories of dynamic targets, effectively utilizing temporal information and calibrating pose errors [5][9]. - Extensive experiments on the Waymo Open Dataset and nuPlan benchmark demonstrate that BezierGS outperforms state-of-the-art alternatives in both dynamic and static scene reconstruction [5][15]. Group 2: Advantages and Future Directions - The approach aims to build high-quality street scenes for training autonomous models, reducing data collection costs and reliance on bounding box accuracy [7][8]. - Future explorations will focus on creating a true autonomous driving world model, with current work limited to trajectory interpolation [7]. - The method enhances the realism of closed-loop evaluations by providing high-quality scene reconstructions, enabling safe and cost-effective simulations of critical extreme scenarios [8][9]. Group 3: Experimental Results - BezierGS achieved superior performance metrics compared to existing methods, with significant improvements in PSNR, SSIM, and Dyn-PSNR across both datasets [37][38]. - In the Waymo dataset, BezierGS showed a PSNR increase of 1.87 dB and a Dyn-PSNR improvement of 2.66 dB, indicating its effectiveness in rendering dynamic content [38][40]. - The nuPlan benchmark results also highlighted BezierGS's ability to correct pose errors automatically, leading to enhanced reconstruction quality [42][43].
ICCV 2025!复旦BezierGS:利用贝塞尔曲线实现极简标注驾驶场景SOTA重建~
自动驾驶之心· 2025-06-30 12:33
点击下方 卡片 ,关注" 自动驾驶之心 "公众号 戳我-> 领取 自动驾驶近15个 方向 学习 路线 今天自动驾驶之心为大家分享 复旦大学ICCV2025中稿的最新工作! BezierGS:基于贝塞尔曲线高斯泼溅的动态城市场景重建! 如 果您有相关工作需要分享,请在文末联系我们! 自动驾驶课程学习与技术交流群事宜,也欢迎添加小助理微信AIDriver004做进一步咨询 >>自动驾驶前沿信息获取 → 自动驾驶之心知识星球 论文作者 | Zipei Ma等 编辑 | 自动驾驶之心 1. 构建一个高质量街景世界,供自驾模型在其中训练、探索,减少数据采集的成本; 2. 减少对bounding box精确性的依赖,目前业界以及开源自驾数据集采集的准确性不是很高,bounding box的标注不精确; 3. 这篇是对自驾世界的学习与探索,未来会探索一个真正的自驾世界模型,该工作只能实现轨迹内插,无法轨迹外插。 论文链接:https://arxiv.org/abs/2506.22099 代码代码:https://github.com/fudan-zvg/BezierGS 随着需要实时传感器反馈的端到端自动驾驶系统的兴起,现 ...