垂直小模型

Search documents
对话|联影智能首席科学家高耀宗:人机协同是AI医疗最优解
2 1 Shi Ji Jing Ji Bao Dao· 2025-09-22 06:24
Core Viewpoint - Geoffrey Hinton, a Turing Award and Nobel Prize winner, has shifted his perspective on AI, now viewing it as a symbiotic relationship rather than a threat, particularly in the medical imaging field [1] Group 1: AI in Medical Imaging - AI is transforming disease screening, diagnosis, risk assessment, and clinical decision-making in the medical imaging market in China [1] - The company United Imaging established a subsidiary, United Imaging Intelligence, in 2017, focusing on AI medical solutions, and has launched over 100 AI applications, with numerous certifications from NMPA, FDA, and CE [1] - AI-assisted diagnosis is now a common tool for radiologists, significantly reducing the rate of missed diagnoses [3] Group 2: Key Personnel and Contributions - Gao Yaozong, the Chief Scientist at United Imaging Intelligence, has a background in computer vision and AI, previously working at Apple before returning to China to focus on medical AI [2][18] - Gao emphasizes the greater value of AI in healthcare compared to entertainment, highlighting the urgent need for AI solutions in China's medical landscape [2] Group 3: AI Development and Applications - The company has developed a lung nodule diagnostic grading system, C-Lung-RADS, based on extensive data from Chinese populations, enhancing early lung cancer screening accuracy [4] - United Imaging has created a mobile health management unit that provides lung cancer screenings to underserved areas, successfully identifying early-stage lung cancer cases [4] - The company has also launched an intelligent electronic medical record system that significantly reduces the time doctors spend on documentation [4][17] Group 4: Future Directions and Challenges - The ideal future technology path combines the strengths of general large models and specialized small models to enhance disease recognition and ensure precision in critical tasks [4][15] - The company faces challenges in developing truly universal, cross-modal medical imaging models and effectively integrating multi-modal information [12][13] - Regulatory challenges exist as AI medical products are classified as high-risk and require stringent approval processes [13][14] Group 5: Collaboration and Data Utilization - The company collaborates with hospitals to gather data while ensuring patient privacy and data security, employing a "data does not leave the hospital" approach [9] - Partnerships with leading hospitals are prioritized to ensure high-quality data for model training, with plans for multi-center validation for broader application [10] Group 6: Market Reach and Deployment - United Imaging's AI applications have been deployed in over 4,000 hospitals globally, integrating AI into imaging devices and providing independent AI platforms for various medical scenarios [11]
21对话|联影智能首席科学家高耀宗:人机协同是AI医疗最优解
2 1 Shi Ji Jing Ji Bao Dao· 2025-09-22 06:17
Core Viewpoint - Geoffrey Hinton, a prominent figure in AI, has shifted from warning about AI risks to expressing optimism about its applications, particularly in medical imaging, where AI can outperform human doctors in information retrieval and risk assessment [1] Company Overview - United Imaging Healthcare established a subsidiary, United Imaging Intelligence, in 2017 to focus on AI medical solutions, leading to the launch of over 100 AI applications, with 15 approved by NMPA, 15 by FDA, and 31 by EU CE, making it a leader in global medical AI certifications [1] - The company has developed a comprehensive ecosystem combining imaging devices and AI technology, which is attractive for the medical AI market in China [3][19] Key Personnel - Gao Yaozong, the Chief Scientist and Senior Vice President of United Imaging Intelligence, has a background in computer vision and AI, previously working at Apple before returning to China to contribute to the medical AI sector [2][19] Market Dynamics - The Chinese medical imaging market is undergoing transformation due to AI, which is enhancing disease screening, diagnosis, risk assessment, and clinical decision-making [1] - The vast population and diverse disease spectrum in China provide a rich data environment for training AI models, making it an ideal location for medical AI development [19] AI Applications in Healthcare - AI-assisted diagnosis is becoming a common tool for radiologists, significantly reducing the rate of missed diagnoses by serving as a "second pair of eyes" [3] - United Imaging has developed a lung nodule diagnosis grading system, C-Lung-RADS, based on 120,000 cases of Chinese population data, improving early lung cancer screening accuracy [4] Technological Innovations - The company employs a dual-path strategy of using both open-source models and proprietary development to enhance AI capabilities in medical imaging [6] - During the COVID-19 pandemic, the company rapidly developed AI systems for diagnostic support, demonstrating strong technical responsiveness [8] Future Directions - The ideal future technology path involves combining the strengths of general large models and specialized small models to enhance disease recognition and ensure precision in critical tasks [15] - The company aims to make AI a supportive tool for doctors, automating routine tasks and providing diagnostic suggestions, while addressing ethical and responsibility issues for higher autonomy in AI [16] Collaboration and Data Management - United Imaging collaborates with hospitals to gather data while ensuring patient privacy and data security, employing a "data does not leave the hospital" approach for model training [9] - The company focuses on multi-center validation to ensure the generalizability of AI models across different hospitals [10] Regulatory Environment - AI medical products are classified as high-risk and require stringent regulatory approval, with over 100 AI products already approved in China [14] - The company actively participates in shaping regulatory guidelines and industry standards to facilitate the development of AI in healthcare [14]