基于人类反馈的强化学习

Search documents
盘一盘,2017年Transformer之后,LLM领域的重要论文
机器之心· 2025-06-29 04:23
Core Insights - The article discusses Andrej Karpathy's concept of "Software 3.0," where natural language becomes the new programming interface, and AI models execute specific tasks [1][2]. - It emphasizes the transformative impact of this shift on developers, users, and software design paradigms, indicating a new computational framework is being constructed [2]. Development of LLMs - The evolution of Large Language Models (LLMs) has accelerated since the introduction of the Transformer architecture in 2017, leading to significant advancements in the GPT series and multimodal capabilities [3][5]. - Key foundational papers that established today's AI capabilities are reviewed, highlighting the transition from traditional programming to natural language interaction [5][6]. Foundational Theories - The paper "Attention Is All You Need" (2017) introduced the Transformer architecture, which relies solely on self-attention mechanisms, revolutionizing natural language processing and computer vision [10][11]. - "Language Models are Few-Shot Learners" (2020) demonstrated the capabilities of GPT-3, establishing the "large model + large data" scaling law as a pathway to more general artificial intelligence [13][18]. - "Deep Reinforcement Learning from Human Preferences" (2017) laid the groundwork for reinforcement learning from human feedback (RLHF), crucial for aligning AI outputs with human values [15][18]. Milestone Breakthroughs - The "GPT-4 Technical Report" (2023) details a large-scale, multimodal language model that exhibits human-level performance across various benchmarks, emphasizing the importance of AI safety and alignment [26][27]. - The release of LLaMA models (2023) demonstrated that smaller models trained on extensive datasets could outperform larger models, promoting a new approach to model efficiency [27][30]. Emerging Techniques - The "Chain-of-Thought Prompting" technique enhances reasoning in LLMs by guiding them to articulate their thought processes before arriving at conclusions [32][33]. - "Direct Preference Optimization" (2023) simplifies the alignment process of language models by directly utilizing human preference data, making it a widely adopted method in the industry [34][35]. Important Optimizations - The "PagedAttention" mechanism improves memory management for LLMs, significantly enhancing throughput and reducing memory usage during inference [51][52]. - The "Mistral 7B" model showcases how smaller models can achieve high performance through innovative architecture, influencing the development of efficient AI applications [55][56].