Workflow
工业异常检测
icon
Search documents
工业异常检测新突破,复旦等多模态融合监测入选CVPR 2025
量子位· 2025-06-16 06:59
Core Viewpoint - The article discusses a significant breakthrough in industrial anomaly detection through the introduction of the Real-IAD D³ dataset and a novel multi-modal fusion detection method called D³M, which enhances detection performance by integrating various data types [1][11][12]. Group 1: Dataset Overview - The Real-IAD D³ dataset was developed to address limitations in existing anomaly detection methods, providing a comprehensive resource that includes high-resolution RGB images, pseudo 3D photometric images, and micron-level precision 3D point cloud data [3][4]. - The dataset encompasses 20 industrial product categories and 69 defect types, totaling 8,450 samples, with 5,000 normal samples and 3,450 abnormal samples [4]. - Real-IAD D³ significantly outperforms existing datasets like MVTec 3D-AD and Real3D-AD in terms of data scale, defect diversity, and point cloud precision, achieving a point cloud precision of 0.002 mm compared to 0.11 mm and 0.011-0.015 mm for the others [4]. Group 2: Methodology and Performance - The D³M method leverages the Real-IAD D³ dataset by integrating RGB, point cloud, and pseudo 3D depth information, which enhances the performance of anomaly detection [6][11]. - Experimental results indicate that D³M outperforms single and dual-modal methods in both image-level and pixel-level anomaly detection metrics, underscoring the importance of multi-modal fusion in industrial anomaly detection [6][8]. - A comparative analysis of different modality combinations shows that D³M achieves the highest detection accuracy, validating the effectiveness of the multi-modal approach [8][9]. Group 3: Implications and Future Directions - The research is expected to advance the field of industrial anomaly detection, providing more reliable solutions for quality control in manufacturing [12]. - This study is part of the Real-IAD series, with the first work also being recognized at CVPR 2024, indicating ongoing contributions to the field [13].
用大模型检测工业品异常,复旦腾讯优图新算法入选CVPR 2025
量子位· 2025-06-06 06:06
而对于这项任务,复旦大学、腾讯优图实验室等机构的研究人员设计了一种 基于扩散模型的少样本异常图像生成新模型DualAnoDiff 。 实验结果显示,DualAnoDiff相比之前的方法取得了新SOTA。 不仅生成的异常图像最接近原始数据集MVTec中的情形,而且实际用来训练检测模型的效果 (检测、定位、分类等下游任务) 都更佳。 DualAnoDiff团队 投稿 量子位 | 公众号 QbitAI AI模型用于工业异常检测,再次取得新SOTA! 相关论文已中稿计算机视觉顶会 CVPR 2025 。 通俗理解,工业界为了检测产品异常,往往需要更多真实的残次品数据来训练检测模型;为了解决数据稀缺问题,常规做法一般是让模型生成 各种逼真 "次品图",并标注"哪个地方坏了"。 那么,它是如何做到的呢? 双分支并行生成机制 目前,工业制造中的异常检测性能受到 异常数据稀缺性 的限制。 为克服这一挑战,研究人员已开始采用异常生成方法来扩充异常数据集。 然而,现有异常生成方法存在生成异常多样性有限、难以实现异常与原始图像无缝融合的问题,且生成的掩码通常与生成的异常区域不匹配。 对此,团队提出同步生成整体图像与对应异常部分的方 ...