Workflow
控制论
icon
Search documents
一文讲透Agent的底层逻辑
Hu Xiu· 2025-10-22 14:47
这篇文章,源于我一年半的AI开发实践,也源于我离职这近两个月里和许多团队密集交流后的一个强烈感受。我发现,在讨论Agent时,我们常常陷入两种 误区:一些人将其神秘化,认为它无所不能;另一些人则将其过度简化,认为它"不过是把ChatGPT多调用几次"。 因为对 agentic 循环过程的体感缺少和原理的理解,形成认知的错位,最终导致我们的沟通成本很高。 因此,我写下这篇长文,希望能为我们这些从业者,建立一个关于Agent的体感和共识基础:AI Agent能力的质变,不仅在于底层大模型日益增长的智力, 更关键的,在于我们围绕模型所设计的、那一套行之有效的"认知流程"。 本文近万字,就是体感的建立和对这套"流程"的完整拆解。你可以根据这份指南,快速找到自己感兴趣的部分: 第一部分:建立直观理解 这里,我用了一个"学霸的五个成长阶段"的比喻,来描述Agent核心能力的演进过程。 同时,我们会分析那个被行业广泛使用的"旅行规划"案例。它就像一道"标准考题",在对比中,我们可以清晰地看到一个动态流程与一次性生成的本质区 别。 第二部分:面向开发者的核心 第四节是本文的技术核心。它会详细拆解"流程"带来的三重价值:如何用 ...
Agent 一年半开发复盘:大家对 Agent 的理解有错位,有效的「认知流程」很关键
Founder Park· 2025-10-22 12:46
Core Insights - The article emphasizes the importance of understanding AI Agents and their cognitive processes, arguing that the true power of AI Agents lies not in the models themselves but in the effective cognitive workflows designed around them [1][2][3]. Group 1: Understanding AI Agents - The author identifies two common misconceptions about AI Agents: one is the mystification of their capabilities, and the other is the oversimplification of their functions [1][2]. - A unified context is proposed to help practitioners understand what is meant by "Agentic" discussions, focusing on the cognitive processes that enhance AI capabilities [2][3]. Group 2: Development Framework - The article outlines a comprehensive framework for understanding the evolution of AI Agents, using a metaphor of a student's growth stages to illustrate the development of core capabilities [3][15]. - It discusses the transition from "prompt engineers" to "Agent process architects," highlighting the need for structured cognitive workflows that enhance AI performance [5][62]. Group 3: Cognitive Processes - The article breaks down the cognitive processes into several key components: Planning, Chain of Thought (CoT), Self-Reflection, and Tool Use, each contributing to the overall effectiveness of AI Agents [4][20][24]. - The importance of iterative processes is emphasized, showcasing how reflection and memory compression can lead to improved decision-making and learning [40][43]. Group 4: Practical Applications - A detailed comparison is made between traditional chatbots and AI Agents using a travel planning example, illustrating how AI Agents can dynamically adjust plans based on real-time information [27][30]. - The article highlights the significance of structured workflows in achieving high-quality, reliable outcomes, contrasting the static nature of traditional chatbots with the dynamic capabilities of AI Agents [35][36]. Group 5: Theoretical Foundations - The effectiveness of AI Agents is linked to foundational theories in Cybernetics and Information Theory, which explain how feedback loops and information acquisition reduce uncertainty in problem-solving [50][59]. - The article argues that the closed-loop nature of AI Agents allows them to continuously refine their actions based on observed outcomes, enhancing their ability to achieve set goals [55][58]. Group 6: Future Directions - The article concludes with a call for a shift in focus from merely creating prompts to designing intelligent processes that enable AI to self-plan, self-correct, and self-iterate [62][70]. - It emphasizes the need for performance engineering to address the challenges of execution efficiency while maintaining high-quality outcomes in AI applications [70][72].