CoT)

Search documents
在WAIC耳朵听出茧子的「智能体」,是时候系统学一下了
机器之心· 2025-08-04 07:05
Core Insights - The article emphasizes the shift in perception of AI large models from simple chatbots to intelligent agents capable of proactive thinking, planning, and task execution [1][2]. Group 1: LLM and Its Capabilities - Standard LLMs generate text responses based on given prompts, showcasing their versatility as a significant advantage [5]. - The integration of reasoning and external API interactions into LLMs is crucial for developing advanced AI agents [6]. Group 2: Tool Utilization - The ability to teach LLMs to integrate and use external tools has become a hot topic in AI research, with examples including calculators, calendars, and search engines [7]. - LLMs can act as "commanders" that coordinate various specialized tools to solve problems effectively [8]. Group 3: Reasoning Models - Reasoning capabilities have been a core focus in LLM research, with the ability to break down complex problems into smaller tasks and determine which tools to use being essential [21][23]. - The Chain of Thought (CoT) method enhances LLMs' reasoning by guiding them to generate a reasoning process before arriving at a final output [24][25]. Group 4: ReAct Framework - The ReAct framework allows LLM-driven agents to autonomously decompose and solve complex problems through a sequential process that integrates reasoning and action [41]. - The framework expands the action space to include language as a form of action, enabling agents to "think" in addition to executing actions [46][49]. Group 5: Applications and Performance - ReAct has been applied in knowledge-intensive reasoning tasks and decision-making scenarios, demonstrating its effectiveness in various contexts [63][64]. - Performance comparisons show that ReAct consistently outperforms other models, highlighting the importance of reasoning during action execution [77]. Group 6: Future of AI Agents - The development of reliable AI agent systems is crucial, as current systems may fail if any step in the sequential problem-solving process goes wrong [114]. - Ongoing research aims to enhance the capabilities and reliability of AI agents, indicating significant advancements in the near future [115].
揭秘:OpenAI是如何发展出推理模型的?
Hua Er Jie Jian Wen· 2025-08-04 07:02
Core Insights - OpenAI's journey towards developing general AI agents began unexpectedly with a focus on mathematics, which laid the groundwork for their reasoning capabilities [2][3] - The success of ChatGPT was seen as a surprising outcome of this foundational work, which was initially low-profile but ultimately led to significant consumer interest [2][3] - OpenAI's CEO Sam Altman envisions a future where users can simply state their needs, and AI will autonomously complete tasks, highlighting the potential benefits of AI agents [3] Group 1: Mathematical Foundations - The initial focus on mathematics was crucial as it serves as a testbed for logical reasoning, indicating that a model capable of solving complex math problems possesses foundational reasoning abilities [2][3] - OpenAI's model recently won a gold medal at the International Mathematical Olympiad, showcasing the effectiveness of their reasoning capabilities developed through mathematical challenges [3] Group 2: Breakthrough Innovations - In 2023, OpenAI achieved a significant leap in reasoning capabilities through an innovative approach known as "Strawberry," which combined large language models, reinforcement learning, and test-time computation [4][5] - This combination led to the development of a new method called "Chain-of-Thought," allowing models to demonstrate their reasoning processes rather than just providing answers [6] Group 3: Nature of AI Reasoning - OpenAI researchers are pragmatic about the nature of AI reasoning, focusing on the effectiveness of models in completing complex tasks rather than strictly adhering to human-like reasoning processes [7] - The company's culture emphasizes a bottom-up approach to research, prioritizing breakthrough ideas over short-term product gains, which has enabled significant investments in reasoning models [7] Group 4: Future Directions - Current AI agents show promise in well-defined tasks but struggle with more subjective tasks, indicating a need for advancements in training models for these areas [8] - OpenAI is exploring new universal reinforcement learning techniques to enable models to learn skills that are difficult to verify, as demonstrated by their IMO gold medal model [8] Group 5: Competitive Landscape - OpenAI, once the leader in the AI industry, now faces strong competition from companies like Google, Anthropic, xAI, and Meta, raising questions about its ability to maintain its lead in the race towards advanced AI agents [9]
10% KV Cache实现无损数学推理!这个开源方法解决推理大模型「记忆过载」难题
量子位· 2025-06-16 04:50
Core Viewpoint - The introduction of R-KV offers a highly efficient compression method that transforms the "rambling" of large models into controllable memory entries, significantly reducing memory usage by 90%, increasing throughput by 6.6 times, and maintaining 100% accuracy [1][2]. Group 1: R-KV Methodology - R-KV employs a three-step process: redundancy identification, importance assessment, and dynamic eviction to manage key/value (KV) tokens during model decoding [5]. - The method allows for real-time compression of KV caches, retaining only important and non-redundant tokens, thus addressing redundancy issues during inference [7][9]. Group 2: Performance Metrics - In tests, R-KV demonstrated superior performance in challenging mathematical benchmarks, significantly outperforming baseline methods and even full KV implementations [19]. - R-KV achieved a memory saving of 90% while maintaining high throughput, with notable improvements in batch processing sizes and overall task performance [21]. Group 3: Visual Comparison - A visual comparison between R-KV and SnapKV shows that R-KV retains critical context and reduces noise effectively, leading to better task completion [12][15]. - R-KV's token selection spans the entire reasoning process, ensuring that essential keywords and values are preserved, unlike SnapKV, which tends to focus on local segments and may retain redundant information [14]. Group 4: Application Scenarios - R-KV is suitable for edge devices requiring long-chain inference, enabling even consumer-grade GPUs and mobile NPUs to run complex models [22]. - The method can also accelerate reinforcement learning sampling processes and is designed to be training-free and plug-and-play [22].
谷歌DeepMind:大模型也很任性,知道最优路径偏要撞南墙
机器之心· 2025-05-05 03:40
Core Insights - The article investigates the common failure modes of Large Language Models (LLMs) in decision-making scenarios, specifically focusing on greediness, frequency bias, and the knowing-doing gap [2][15]. - It proposes a reinforcement learning fine-tuning method (RLFT) to enhance the decision-making capabilities of LLMs by addressing these shortcomings [2][8]. Group 1: Failure Modes - LLMs exhibit suboptimal exploration and a knowing-doing gap, which prevents effective translation of knowledge into action [2][15]. - The three identified failure modes are: 1. Greediness, where LLMs overly favor actions that have previously shown the best performance [15]. 2. Frequency bias, where LLMs tend to repeat high-frequency actions regardless of their reward differences [5][18]. 3. Knowing-doing gap, where LLMs understand task requirements but fail to execute optimal actions due to a preference for greedy choices [7][20]. Group 2: Model Performance - Small-scale LLMs (2B) are significantly affected by frequency bias, leading to a lack of exploration, with up to 55% of actions remaining unexplored [4][18]. - Large-scale LLMs (27B) show reduced frequency bias but still exhibit greedy behavior, limiting their overall performance [6][18]. - The average action coverage for the largest models was only 45%, indicating a substantial gap compared to optimal strategies [17]. Group 3: Reinforcement Learning Fine-Tuning - The RLFT method adjusts the reasoning process of LLMs based on rewards obtained from environmental interactions, promoting the selection of actions that yield higher rewards [8][22]. - Results indicate that RLFT significantly reduces regret values in various environments, improving LLM performance compared to random baselines [22]. - RLFT effectively mitigates greediness by encouraging exploration, thus enhancing decision-making capabilities [22].