Workflow
生物成矿现象
icon
Search documents
【解放日报】新发现:植物体内不仅有“稀土矿”还有“加工厂”
Jie Fang Ri Bao· 2025-11-10 01:05
我国科研人员在一种名为乌毛蕨的蕨类植物体内,不仅发现大量富集的稀土元素,还首次观测到这 些稀土元素在植物组织细胞间"自我组装",形成了一种名为"镧独居石"的矿物。 这是科学家首次在天然植物中发现稀土元素的生物成矿现象,为未来稀土资源的可持续利用提供了 新路径。相关成果于11月5日在线发表于国际学术期刊《环境科学与技术》。 稀土被誉为"工业维生素",是人工智能、新能源、国防等重点领域不可或缺的核心战略资源,但传 统稀土矿物开采伴随着生态环境破坏。近年来,中国科学院广州地球化学研究所朱建喜研究员团队致力 于寻找更清洁、更可持续的稀土获取方式。 此前,科学界已发现乌毛蕨等一批特殊的稀土"超积累植物",即对稀土元素具有超强富集能力。它 们仿佛土壤中的"稀土吸尘器",能高效吸收并浓缩分散在环境中的稀土元素。 在该研究中,科学家观测到,在乌毛蕨叶片的维管束和表皮组织中,从土壤中吸收的稀土元素会以 纳米颗粒形式沉淀,并进一步结晶成一种名叫"镧独居石"的矿物。进一步研究发现,该过程实际上是一 种植物的自我保护机制,就像是植物在体内"打包封存"有毒物质,把可能伤害细胞的稀土离子,稳稳锁 进矿物结构中,实现稀土的钝化和自然"解毒 ...
关于稀土,有重要发现
21世纪经济报道· 2025-11-07 14:26
Core Viewpoint - The discovery of rare earth elements in the plant "Osmunda japonica" and their self-assembly into a mineral called "lanthanite" presents a new sustainable pathway for rare earth resource utilization, addressing ecological concerns associated with traditional mining methods [1][2][4]. Group 1: Research Findings - Researchers found that rare earth elements absorbed by Osmunda japonica precipitate as nanoparticles and crystallize into lanthanite, which acts as a protective mechanism for the plant, effectively sequestering potentially harmful rare earth ions [2][4]. - The lanthanite formed by Osmunda japonica is pure and non-radioactive, unlike naturally occurring lanthanite that often contains radioactive elements, thus offering a promising green extraction potential [4]. Group 2: Implications for Sustainable Utilization - The study opens new avenues for research on hyperaccumulator plants and suggests that cultivating Osmunda japonica could facilitate the recovery of valuable rare earth elements while simultaneously remediating contaminated soils and restoring ecosystems affected by rare earth mining [4]. - This approach embodies a "repair and recover" green circular model, allowing for the dual benefit of environmental restoration and resource recovery [4].
新发现:植物体内不仅有“稀土矿”还有“加工厂”
Xin Hua She· 2025-11-06 07:32
Core Insights - Researchers have discovered a significant accumulation of rare earth elements in a fern species called "U毛蕨" and observed the self-assembly of these elements into a mineral known as "lanthanite" within plant tissues, marking the first instance of biogenic mineralization of rare earth elements in natural plants [1][2] Group 1: Research Findings - The study published on November 5 in the journal "Environmental Science & Technology" highlights the potential for sustainable utilization of rare earth resources through the biogenic processes observed in U毛蕨 [1] - U毛蕨 has been identified as a "super-accumulator" plant, effectively absorbing and concentrating rare earth elements from the soil, functioning like a "vacuum cleaner" for these elements [1][2] Group 2: Implications for Industry - The biogenic lanthanite formed in U毛蕨 is free from radioactive elements like uranium and thorium, which are commonly found in natural lanthanite, presenting a cleaner alternative for rare earth extraction [3] - This discovery opens new avenues for the sustainable recovery of rare earth elements, suggesting that cultivating U毛蕨 and similar plants could facilitate soil remediation and the recovery of valuable rare earths simultaneously, promoting a green recycling model [3]