逆强化学习
Search documents
基于深度强化学习的轨迹规划
自动驾驶之心· 2025-08-28 23:32
Core Viewpoint - The article discusses the advancements and potential of reinforcement learning (RL) in the field of autonomous driving, highlighting its evolution and comparison with other learning paradigms such as supervised learning and imitation learning [4][7][8]. Summary by Sections Background - The article notes the recent industry focus on new technological paradigms like VLA and reinforcement learning, emphasizing the growing interest in RL following significant milestones in AI, such as AlphaZero and ChatGPT [4]. Supervised Learning - In autonomous driving, perception tasks like object detection are framed as supervised learning tasks, where a model is trained to map inputs to outputs using labeled data [5]. Imitation Learning - Imitation learning involves training models to replicate actions based on observed behaviors, akin to how a child learns from adults. This is a primary learning objective in end-to-end autonomous driving [6]. Reinforcement Learning - Reinforcement learning differs from imitation learning by focusing on learning through interaction with the environment, using feedback from task outcomes to optimize the model. It is particularly relevant for sequential decision-making tasks in autonomous driving [7]. Inverse Reinforcement Learning - Inverse reinforcement learning addresses the challenge of defining reward functions in complex tasks by learning from user feedback to create a reward model, which can then guide the main model's training [8]. Basic Concepts of Reinforcement Learning - Key concepts include policies, rewards, and value functions, which are essential for understanding how RL operates in autonomous driving contexts [14][15][16]. Markov Decision Process - The article explains the Markov decision process as a framework for modeling sequential tasks, which is applicable to various autonomous driving scenarios [10]. Common Algorithms - Various algorithms are discussed, including dynamic programming, Monte Carlo methods, and temporal difference learning, which are foundational to reinforcement learning [26][30]. Policy Optimization - The article differentiates between on-policy and off-policy algorithms, highlighting their respective advantages and challenges in training stability and data utilization [27][28]. Advanced Reinforcement Learning Techniques - Techniques such as DQN, TRPO, and PPO are introduced, showcasing their roles in enhancing training stability and efficiency in reinforcement learning applications [41][55]. Application in Autonomous Driving - The article emphasizes the importance of reward design and closed-loop training in autonomous driving, where the vehicle's actions influence the environment, necessitating sophisticated modeling techniques [60][61]. Conclusion - The rapid development of reinforcement learning algorithms and their application in autonomous driving is underscored, encouraging practical engagement with the technology [62].
二段式SOTA!港科大FiM:从Planning的角度重新思考轨迹预测
自动驾驶之心· 2025-08-09 16:03
Core Insights - The article presents a novel approach to trajectory prediction in autonomous driving, emphasizing a "First Reasoning, Then Forecasting" strategy that integrates intention reasoning to enhance prediction accuracy and reliability [2][4][48]. Group 1: Methodology - The proposed method introduces an intention reasoner based on a query-centric Inverse Reinforcement Learning (IRL) framework, which captures the behavior of traffic participants and their intentions in a compact representation [2][6][48]. - A bidirectional selective state space model (Bi-Mamba) is developed to improve trajectory decoding, effectively capturing the sequential dependencies of trajectory states [7][9][48]. - The framework utilizes a grid-level graph to represent the driving context, allowing for efficient modeling of participant behavior and intentions [5][6][20]. Group 2: Experimental Results - Extensive experiments on large datasets such as Argoverse and nuScenes demonstrate that the proposed method significantly enhances prediction confidence and achieves competitive performance compared to state-of-the-art models [9][34][38]. - In the Argoverse 1 dataset, the proposed method (FiM) outperformed several strong baseline methods in key metrics such as Brier score and minFDE6, indicating its robust predictive capabilities [34][35]. - The results from Argoverse 2 further validate the effectiveness of the intention reasoning strategy, showing that longer-term intention supervision improves prediction reliability [36][37]. Group 3: Challenges and Innovations - The article highlights the inherent challenges in modeling intentions due to the complexity of driving scenarios, advocating for the use of large reasoning models (LRMs) to enhance intention inference [5][6][12]. - The integration of a dense occupancy grid map (OGM) prediction head is introduced to model future interactions among participants, which enhances the overall prediction performance [7][25][41]. - The study emphasizes the importance of intention reasoning in motion prediction, establishing a promising baseline for future research in trajectory prediction [48].
干货 | 基于深度强化学习的轨迹规划(附代码解读)
自动驾驶之心· 2025-07-29 23:32
Core Viewpoint - The article discusses the advancements and applications of reinforcement learning (RL) in the field of autonomous driving, highlighting its potential to enhance decision-making processes in dynamic environments. Group 1: Background and Concepts - The concept of VLA (Variational Learning Algorithm) and its relation to embodied intelligence is introduced, emphasizing its similarity to end-to-end autonomous driving [3] - Reinforcement learning has gained traction in various industries following significant milestones like AlphaZero in 2018 and ChatGPT in 2023, showcasing its broader applicability [3] - The article aims to explain reinforcement learning from a computer vision perspective, drawing parallels with established concepts in the field [3] Group 2: Learning Methods - Supervised learning in autonomous driving involves tasks like object detection, where a model is trained to map inputs to outputs using labeled data [5] - Imitation learning is described as a method where models learn actions by mimicking human behavior, akin to how children learn from adults [6] - Reinforcement learning differs from imitation learning by focusing on optimizing actions based on feedback from interactions with the environment, making it suitable for sequential decision-making tasks [7] Group 3: Advanced Learning Techniques - Inverse reinforcement learning is introduced as a method to derive reward functions from expert data, particularly useful when defining rewards is challenging [8] - The Markov Decision Process (MDP) is explained as a framework for modeling decision-making tasks, where states, actions, and rewards are interrelated [9] - Dynamic programming and Monte Carlo methods are discussed as techniques for solving reinforcement learning problems, emphasizing their role in optimizing decision-making processes [11][12] Group 4: Reinforcement Learning Algorithms - Various reinforcement learning algorithms are categorized, including on-policy and off-policy methods, highlighting their differences in training stability and data utilization [25][26] - The article outlines key algorithms such as Q-learning, SARSA, and policy gradient methods, explaining their mechanisms and applications in reinforcement learning [27][29] - Advanced algorithms like TRPO and PPO are presented, focusing on their strategies for ensuring stable training and optimizing policy updates [57][58] Group 5: Applications in Autonomous Driving - The importance of reward design in autonomous driving is emphasized, with safety, comfort, and efficiency being key factors [62] - The article discusses the need for closed-loop training systems in autonomous driving, where vehicle actions influence the environment, necessitating dynamic modeling of other vehicles [62] - The integration of end-to-end learning with reinforcement learning is highlighted as a method to adapt to changing environments in real-time [63]
二段式端到端新SOTA!港科大FiM:从Planning的角度重新思考轨迹预测(ICCV'25)
自动驾驶之心· 2025-07-26 13:30
Core Viewpoint - The article presents a novel approach to trajectory prediction in autonomous driving, emphasizing a "First Reasoning, Then Forecasting" strategy that integrates intention reasoning to enhance prediction accuracy and reliability [2][4][47]. Group 1: Methodology - The proposed method introduces an intention reasoner based on a query-centric Inverse Reinforcement Learning (IRL) framework, which explicitly incorporates behavioral intentions as spatial guidance for trajectory prediction [2][5][47]. - A bidirectional selective state space model (Bi-Mamba) is developed to improve the accuracy and confidence of trajectory predictions by capturing sequential dependencies in trajectory states [9][47]. - The approach utilizes a grid-level graph representation to model participant behavior, formalizing the task as a Markov Decision Process (MDP) to define future intentions [5][6][21]. Group 2: Experimental Results - Extensive experiments on large-scale datasets such as Argoverse and nuScenes demonstrate that the proposed method significantly enhances trajectory prediction confidence, achieving competitive performance compared to state-of-the-art models [2][33][36]. - The method outperforms existing models in various metrics, including Brier score and minFDE6, indicating its robustness in complex driving scenarios [33][35][36]. - The integration of a spatial-temporal occupancy grid map (S-T OGM) enhances the model's ability to predict future interactions among participants, further improving prediction quality [9][39]. Group 3: Contributions - The article highlights the critical role of intention reasoning in motion prediction, establishing a promising baseline model for future research in trajectory prediction [47]. - The introduction of a reward-driven intention reasoning mechanism provides valuable prior information for trajectory generation, addressing the inherent uncertainties in driving behavior [8][47]. - The work emphasizes the potential of reinforcement learning paradigms in modeling driving behavior, paving the way for advancements in autonomous driving technology [5][47].