Workflow
量子纠缠态
icon
Search documents
科学家让两个原子核实现“远距离聊天”
Ke Ji Ri Bao· 2025-09-19 00:40
【总编辑圈点】 团队此次通过让每个原子核与一个独立的电子耦合,再让这两个电子在空间中相互作 用,从而实现原子核之间的远距离通信。此前,原子核就像被关在隔音房间里的个体,虽然 同处一室时对话清晰,但无法与外界沟通。现在,团队相当于给了它们一部"电话",可与其 他房间进行通话。每个房间依然安静、隔离良好,但交流范围却大大扩展。 实验中,两个原子核相距约20纳米(仅为人头发丝直径的千分之一)。团队解释称,这 听起来微小,但如果将原子核放大到一个人的大小,它们之间的距离相当于悉尼与波士顿之 间的跨度。更重要的是,20纳米正是当前用于制造手机和电脑芯片的现代硅技术标准尺度。 测试中,团队利用日本庆应义塾大学提供的超纯硅晶圆,将磷原子精准植入芯片。 基于原子核自旋的硅量子计算机,正在规模化道路上前进,此次成果扫清了一个最大障 碍,且新方法既稳健又可扩展。目前实验仅使用两个电子,未来可引入更多电子,实现相互 作用的快速、精确开关。 一组国际科学家团队在量子计算领域取得重大突破:首次利用两个原子核的自旋实现 了"量子纠缠态",让原子核实现了"远距离聊天"。这一纠缠是量子计算机超越传统计算机的 核心资源,显示出利用现有半导体技 ...
向构建大规模量子计算机迈出关键一步 科学家让两个原子核实现“远距离聊天”
Ke Ji Ri Bao· 2025-09-18 23:55
Core Insights - A team of international scientists has achieved a significant breakthrough in quantum computing by utilizing the spin of two atomic nuclei to realize "quantum entanglement," enabling long-distance communication between atomic nuclei, which is a core resource for quantum computers to surpass traditional computers [1][2] - This achievement demonstrates the immense potential of using existing semiconductor technology and manufacturing processes to create future quantum chips, marking a critical step towards building large-scale quantum computers [1] Group 1 - The research addresses a fundamental contradiction in quantum computing: the need to protect qubits from external noise while allowing them to interact for computation [1] - The study focuses on a previously considered difficult-to-scale technology path: encoding quantum information using the spin of phosphorus nuclei implanted in silicon chips [1][2] Group 2 - The team achieved long-distance communication between atomic nuclei by coupling each nucleus with an independent electron and allowing these electrons to interact in space, effectively giving the nuclei a "phone" to communicate with each other [2] - The distance between the two atomic nuclei in the experiment was approximately 20 nanometers, which, when scaled up, is comparable to the distance between Sydney and Boston, highlighting the feasibility of this method within current silicon technology standards [2] Group 3 - The results clear a major obstacle for silicon-based quantum computers, which are progressing towards scalability, and the new method is both robust and expandable [2] - The current experiment utilized only two electrons, with future potential to introduce more electrons for rapid and precise switching of interactions [2]