银河系磁场

Search documents
共探古老星团,中国天眼联手南非阵列望远镜刷新观测极限
news flash· 2025-05-25 14:31
Core Insights - Tsinghua University, in collaboration with astronomers from Italy, Australia, Germany, and other countries, has conducted high-precision observations of globular clusters in the Milky Way using the Chinese FAST and South African MeerKAT telescopes, providing the most comprehensive measurements of magnetic field gradients and ionized gas upper limits to date [1] Group 1 - The research offers a clearer magnetic field map of the Milky Way, contributing to the understanding of cluster evolution and the galactic magnetic field [1]
最新观测数据揭示银河系古老天体“秘密”
Ke Ji Ri Bao· 2025-05-21 00:50
研究发现,除了47 Tucanae之外,其他球状星团中没有可探测的电离气体,异常"干净"。这一发现与理 论模型预测的球状星团内部应存在大量气体的情况相矛盾,揭示了球状星团内部可能存在有效的气体清 除机制,如来自白矮星和年轻恒星的强烈辐射风。"我们原以为球状星团应该充满气体,却发现它们已 达无尘之境。"论文第一作者,中国科学院国家天文台、澳大利亚斯威本科技大学张蕾博士说:"这迫使 我们重新思考星团演化理论。"(记者何星辉) 近日,清华大学李菂团队联合意大利、澳大利亚、德国等多国天文学家,综合"中国天眼"FAST和南非 MeerKAT阵列望远镜的优势,对银河系球状星团进行了高精度的脉冲星偏振普查。研究首次结合了两 台望远镜的脉冲星观测数据,提供了迄今为止最全的球状星团磁场梯度和电离气体上限的测量,为理解 星团演化和银河系磁场提供了新的视角。相关成果5月20日以封面文章形式刊发于《科学通报》。 球状星团是银河系中最古老的天体之一,通常由数百万颗恒星构成,包括脉冲中子星。高度磁化的脉冲 星以极高的精度发出规律的电磁脉冲信号。这些信号穿越广袤的星际空间到达地球,携带了星际物质和 磁场的宝贵信息。研究团队利用上述两台世界 ...
新技术精确模拟银河系星际湍流
Ke Ji Ri Bao· 2025-05-13 23:26
Core Insights - A collaborative team from the University of Toronto, Princeton University, and the Australian National University has developed an innovative computer simulation technology that explores the interstellar medium (ISM) with unprecedented precision and scale [1][2] - The new model provides insights into astrophysical phenomena such as ISM, galactic magnetic fields, star formation, and cosmic ray propagation, and has been published in the latest issue of Nature Astronomy [1] Group 1: Model Capabilities - The new model achieves significant breakthroughs in size and detail, capable of simulating a spatial volume approximately 30 light-years across, with the smallest version reduced to about 1/5000 of that size [2] - It offers higher resolution and scalability, allowing for the simulation of dynamic changes in ISM density, which previous models could not account for [2] Group 2: Scientific Implications - The model utilizes observational data from the solar-Earth system to validate simulation results, indicating a better understanding of space weather and its effects on Earth [2] - Turbulence is a common phenomenon in various natural and engineering contexts, and the model enhances understanding of how magnetic fields influence gas flow and star formation, as well as the impact of cosmic weather events like solar storms on Earth [2]