Workflow
AI产业新范式
icon
Search documents
2026年投资峰会速递:AI产业新范式
HTSC· 2025-11-10 12:07
Investment Rating - The report maintains an "Overweight" rating for the technology and computer sectors [7]. Core Insights - The AI industry is entering a new paradigm characterized by the Scaling Law 2.0, where synthetic data expands the training data ceiling, and the Mid Training paradigm reshapes model evolution paths [2][3]. - The commercial application of AI is transitioning into a scaling phase, with the integration of agent capabilities and transaction loops accelerating industry implementation [2][6]. Summary by Sections Models - Computing power expansion remains the core growth engine, with representative model training computing power expected to grow at an annual rate of 4-5 times from 2010 to 2024, with leading models achieving up to 9 times [3][13]. - The cost of complete training for frontier models is projected to reach the billion-dollar level by 2027 [3][13]. Training - The Mid Training paradigm expands training boundaries by integrating reinforcement learning (RL) into the middle stage, enhancing data generation and optimal allocation [4][16]. - This approach significantly increases data utilization efficiency and is expected to break traditional performance limits [4][16]. Agents - GPT-5 establishes a "unified system" direction, promoting standardization in agent architecture through adaptive collaboration between fast and deep thinking [5][19]. - The real-time router dynamically allocates computing resources based on task complexity, enhancing response efficiency and stability in complex scenarios [5][19]. Applications - The integration of agent capabilities into commercial transactions marks a new phase of AI applications, with OpenAI's Agentic Commerce Protocol enabling AI agents to execute purchases directly [6][22]. - The global AI application landscape is evolving through three stages: productization in 2023, commercialization trials in 2024, and scaling implementation in 2025 [25][26]. - Domestic AI applications are accelerating, with significant advancements in commercial capabilities following the release of models like DeepSeek-R1 [26].