Workflow
AI Coding Agents
icon
Search documents
Developer Experience in the Age of AI Coding Agents – Max Kanat Alexander, Capitol One
AI Engineer· 2025-12-23 17:30
Developer Experience & AI Agents - The software engineering industry has seen rapid changes in the past year, making future predictions difficult [1][2][3] - Companies are questioning whether current investments in developer tools will be valuable in the future [4] - Coding agents are transformative, but not the only investment needed for software engineering organizations [5] - No-regret investments should focus on inputs to AI agents and things around them that enhance their effectiveness [7][8] Development Environment & Tools - Standardize development environments using industry-standard tools to align with AI model training sets [9][10] - Prioritize CLIs or APIs for agent actions to ensure accuracy and effectiveness [13][14] - Validation is crucial; high-quality validation with clear error messages significantly improves agent capabilities [15][16] Codebase & Documentation - Invest in well-structured and testable codebases for better agent performance [18][19] - Comprehensive documentation is essential, especially for information not directly in the code [20][21][22][23][24][25] Code Review & Collaboration - Improve code review velocity to address bottlenecks caused by increased PRs from agentic coding [26][27] - Distribute code review responsibilities and establish clear ownership with SLOs to avoid overburdening individual reviewers [29][30][31] - Maintain high code review quality to prevent a decline in productivity from agentic coders [32][33][34] Key Principle - What benefits humans also benefits AI; investments in these areas will help developers regardless of AI outcomes [44][45]
AI Engineer Code Summit: AIE/LEAD Track
AI Engineer· 2025-11-03 21:02
AI在软件工程中的应用与发展 - 多个公司和研究机构正在探索和开发AI在软件工程中的应用,包括代码生成、质量控制和自动化[1] - 行业关注AI如何提升软件开发效率和质量,以及如何量化AI在软件工程中的投资回报率[1] - AI Coding Agents 的未来发展趋势,包括构建可靠的系统以适应模型迭代周期[1] - 讨论了AI在浏览器构建中的应用,以及从中获得的经验教训[1] 工程实践与领导力 - 探讨了在AI辅助工程中如何进行领导,以及如何构建AI原生公司[1] - 讨论了工程团队如何利用AI来改进支持服务[1] - 一些公司正在尝试新的工程师激励机制,例如将工程师的薪酬与销售业绩挂钩[1] - 传统敏捷方法的替代方案正在被探索[1] 特定技术与平台 - 关注 evolving Claude APIs for Agents [1] - 讨论了Minimax M2 的研究与应用[1] - 介绍了Google DeepMind 的研究成果及其在现实中的应用[1] - Bloomberg 在其工程组织中部署 AI 的经验教训[1]