Bionic Technology
Search documents
告别磁铁和吸盘!中国团队造出生物履带,让机器人真成了水陆两栖壁虎
机器人大讲堂· 2026-01-13 04:04
一种新型自适应刚软混合履带,让机器人在水陆之间轻松穿梭。 在仿生机器人接连取得突破之际,中国团队完成了一项关键的能力融合。他们成功研制出全球首个能稳健实现 水空界面无缝穿越的仿生攀爬机器人。 这项来自西安交通大学研究团队的突破性成果,于近期发表在国际权威期刊 《 Science Advances 》 上, 为解决机器人如何在复杂多变、甚至充满风险的真实环境中稳定工作这一难题,提供了一个精巧的仿生学方 案。 ▍ 现实难题:现有爬墙机器人,本领单一怕跨介 在我们的设想中,理想的作业机器人应该是个全能选手。 它既能在地面巡查,也能在墙壁、天花板上攀爬;既能在干燥的室内工作,也能潜入水下执行任务;面对金 属、玻璃、瓷砖等不同材质的表面,都应能全盘吸收,牢牢吸附。 磁吸附: 只能认准铁磁性表面。 负压吸附: 需要光滑密封的表面,一旦漏水漏气就失效,且能耗很高。 仿壁虎干性粘附: 在干燥环境下表现优异,但一到水下就抓瞎。 仿章鱼吸盘: 在水下是一把好手,离开水后吸附力便大打折扣。 更关键的是,当机器人需要从水下爬到空中,或从空中进入水下时,能力就全然丧失。就例如从池塘里浮出水 面进行观测,动态变化的浮力、阻力以及介质转换 ...
打破复杂水域探测困境!浙大仿生机器鱼登CELL子刊,双游动模式展现卓越环境适应性,负重54倍稳定前行
机器人大讲堂· 2025-10-16 11:59
Core Insights - The article discusses the development of a bionic robotic fish by Zhejiang University, which addresses the challenges of underwater exploration and monitoring in complex marine environments [1][3]. Innovation and Design - The robotic fish features a novel drive/deformation system based on a structure called "Post-Buckling Notched Plates" (PBNP), which mimics the pectoral fins of manta rays to convert small linear movements into significant fin flapping [5][7]. - The design allows for controlled and efficient deformation, enabling the robotic fish to navigate both narrow spaces and open waters effectively [1][5]. Performance and Modes - The swimming behavior of the robotic fish is controlled by three parameters: vacuum pressure, frequency, and duty cycle, which influence the fin flapping and overall swimming performance [10][12]. - It operates in two modes: "flapping mode" for rapid propulsion and efficient cruising at low frequencies (0-4 Hz), and "oscillation mode" for stable movement in confined spaces at higher frequencies (above 4 Hz) [12][16]. Environmental Adaptability - The robotic fish demonstrates exceptional adaptability to extreme conditions, functioning in temperatures ranging from 0.6°C to 87.2°C, making it suitable for various marine environments [19][20]. - It can seamlessly switch between modes to navigate through different environmental challenges, such as strong currents and narrow gaps [22][24]. Multi-Functionality - A non-tethered version of the robotic fish integrates multiple functions, including propulsion, monitoring, and communication, into a compact design, enhancing its operational reliability [25][27]. - The system can sample water quality in real-time and distribute substances like feed or water treatment agents during operation, transforming the robotic fish into a mobile workstation for aquaculture and environmental monitoring [27][28]. Future Developments - Future research aims to optimize the fish's shape to reduce hydrodynamic drag and enhance its autonomous navigation capabilities through advanced sensor integration [29].