Computer Vision

Search documents
多样化大规模数据集!SceneSplat++:首个基于3DGS的综合基准~
自动驾驶之心· 2025-06-20 14:06
以下文章来源于3D视觉之心 ,作者3D视觉之心 3D视觉之心 . 3D视觉与SLAM、点云相关内容分享 点击下方 卡片 ,关注" 自动驾驶之心 "公众号 戳我-> 领取 自动驾驶近15个 方向 学习 路线 评估协议的关键局限性 三维计算机视觉领域高度关注于捕捉场景的几何和视觉外观,以及理解其内容。近年来,三维高斯溅射(3D Gaussian Splatting, 3DGS)因其独特的能力——能够以一种紧凑的形式联合编码场景的几何、外观和理解属性 (该形式可以有效地从二维带位姿的图像中优化得到)——已成为最理想的三维表示方法。此外,视觉-语言推 理代表了三维场景理解最具前景的方向,因为它将场景的视觉和几何属性与我们用来定义、描述和推理概念的语 言连接起来。因此,本文专注于利用 3DGS 进行视觉-语言场景理解。 语言高斯溅射(Language Gaussian Splatting, LGS)最相关的方法可分为三类。前两类方法首先使用视觉-语言基 础模型(例如 CLIP)从所有训练图像中提取二维特征。第一类随后执行基于梯度的单场景优化,将特征向量分 配给每个三维高斯基元(primitive),并优化它们,使其渲染 ...
OMNIQ Reports $19.9 Million Revenue in the First Quarter 2025
Globenewswire· 2025-05-15 19:47
SALT LAKE CITY, May 15, 2025 (GLOBE NEWSWIRE) -- OMNIQ CORP. (OTCMKTS: OMQS) ("omniQ" or "the Company"), reports a first quarter 2025 revenue of $19.9 million, which signifies an 8.7 percent increase Year-over-Year. FINANCIAL SUMMARY In Q1 2025, the Company reported revenue of $19.9 million, marking an increase of 8.7 percent compared to $18.3 million in Q1 2024. Net loss for the quarter remained steady at $2.1 million, unchanged from the same period last year. Basic loss per share from continuing operation ...
CVPR 2025 Oral | DiffFNO:傅里叶神经算子助力扩散,开启任意尺度超分辨率新篇章
机器之心· 2025-05-04 04:57
本文由圣路易斯华盛顿大学与北京大学联合完成,第一作者为圣路易斯华盛顿大学的刘晓一,他在北京大学访问期间完成了该项研究;通讯作者为北京大学计算 机学院唐浩助理教授 / 研究员。 从单张低分辨率(LR)图像恢复出高分辨率(HR)图像 —— 即 "超分辨率"(SR)—— 已成为计算机视觉领域的重要挑战。近年来,随着医疗影像、卫星遥感、 视频监控和游戏渲染等应用对图像细节的需求不断提升,该技术的应用愈发广泛。传统深度学习超分模型(如 SRCNN、EDSR)在固定放大倍数下表现优异,但 要么无法支持任意放大尺度,要么在大倍率和复杂纹理场景中常出现细节模糊和伪影。扩散模型能有效恢复高频细节,却因需多次迭代去噪而推理缓慢,难以满 足实时应用需求。为彻底打破 "高质量重建" 与 "快速推理" 之间的矛盾,算子学习在运算效率和分辨率不变性方面的提升为该领域带来了新的机遇。 圣路易斯华盛顿大学和北京大学团队提出的 DiffFNO(Diffusion Fourier Neural Operator)以神经算子赋能扩散架构。该方法支持高质、高效、任何连续倍率(如 2.1、11.5 等)的超分。它的优秀表现来源于三大组件:【1】加权傅 ...