含硼药物

Search documents
精准“爆破”癌细胞,有了新型“特种兵”(探一线)
Ren Min Ri Bao· 2025-08-15 22:11
Core Viewpoint - Boron Neutron Capture Therapy (BNCT) is a promising new radiation therapy that aims to effectively kill cancer cells while minimizing damage to healthy cells, representing a significant advancement over traditional radiation methods [1][2]. Group 1: Technology Overview - BNCT is a binary targeted therapy that involves two main steps: injecting a non-toxic boron-10 compound that accumulates in cancer cells, followed by neutron irradiation that triggers a nuclear reaction to release high-energy particles, effectively damaging cancer cell DNA [1][2]. - The "blast radius" of BNCT is less than 10 micrometers, which is smaller than the diameter of a cancer cell, resulting in minimal harm to normal tissues [2]. Group 2: Historical Context and Development - The concept of BNCT was introduced in the 1930s, with subsequent research focused on its feasibility for cancer treatment [2]. - Historically, strong neutron beams for BNCT were produced using nuclear reactors, which posed challenges for hospital applications. However, advancements in accelerator neutron source technology in the 21st century have made it safer and more cost-effective for clinical use [2]. Group 3: Technological Breakthroughs - The research team has achieved three major technological breakthroughs: 1. Development of a high-power, stable accelerator neutron source system that meets the requirements for proton beam flow [3]. 2. Creation of a second-generation boron compound with improved synthesis efficiency, reduced production costs, and enhanced quality and efficacy [3]. 3. Development of a domestic BNCT treatment planning system (TPS) that accurately analyzes and predicts treatment outcomes [3]. - These advancements position the country among the global leaders in BNCT research and development, with plans to initiate clinical trials by the end of the year [3].