Workflow
地下矿山越界开采动态监测技术
icon
Search documents
青岛地下矿山越界开采动态监测技术取得突破性进展
与传统人工巡查和静态监测手段存在滞后性相比,此次推出的监测技术能够实时动态地把控大地音脉,融合了多项创新成果。通过"微地震+智能微 动"勘探技术,部署震源监测网,加持"5G+物联网传输"能够实时采集和传输地下矿山的开采震动,确保听得到、听得清,是矿山监管的"顺风耳";研发多 维智能动态监测预警平台,将矿山时空立体图库、AI智能分析等技术融为一体,研发学习算法,对比实际作业数据与采矿权电子围栏,自动识别越界行为 并触发预警,实现了"透明矿山"管理,是矿山监管的"透视眼"。 地下矿山越界开采动态监测技术的革新,标志着矿山安全监管迈入智能化时代。监测系统的建立和研发过程中,技术人员进行了大量的实验和优化,现 已形成一套智能系统的全过程监管体系。该技术的落地将加速矿业监管的数字化转型,保障安全生产和合法开采,助力矿山企业高质量发展。(王晶 李 斌) 地下矿山开采具有隐蔽性等特点,传统监测方式多采用常规测量手段,需要专业人员进入矿山内部,耗时较长,存在滞后性和被动性,故而需要研发一 套非接触式的实时动态监测体系,实现对地下矿山越界开采从采集分析到预警推送的智能化全过程动态监管。 近日,青岛市勘察测绘研究院研发的地下矿山 ...
解码台风“水汽指纹”
Core Viewpoint - The Guangdong Provincial Land Resources Surveying and Mapping Institute has innovatively utilized GDCORS (Guangdong Satellite Navigation Positioning Reference Service System) data to establish a comprehensive monitoring system for typhoon-related water vapor, providing scientific support for geological disaster prevention and mitigation. Group 1: Technology and Methodology - The ground-based GNSS water vapor inversion technology captures atmospheric refractive delay signals to accurately analyze Precipitable Water Vapor (PWV) [1][4] - This technology allows for minute-level updates of water vapor transport paths during typhoon events, significantly enhancing disaster warning capabilities [1][4] - The GDCORS network consists of 575 stations with an average spacing of approximately 26 kilometers, covering the entire province and facilitating data sharing with neighboring provinces [5][12] Group 2: Findings and Analysis - The study revealed a significant negative correlation (-0.86) between water vapor changes at GDCORS stations and the distance to the typhoon center, indicating a direct dynamic relationship [2][9] - Water vapor changes exhibit a three-phase pattern in relation to typhoon proximity: rapid increase, high-value oscillation, and quick decline [2][9] - The spatial and temporal changes in water vapor are highly coupled with rainfall processes, providing new technical means for short-term forecasting and regional precipitation warnings [2][9] Group 3: Impact of Geography - Topography significantly influences water vapor transport and extreme precipitation during typhoons, with mountain barriers affecting the distribution of rainfall [3][10] - The study highlighted that the presence of mountains can enhance convective activity on the windward side, leading to significant water vapor accumulation and precipitation before reaching the leeward side [3][10] Group 4: Application and Future Directions - The GNSS water vapor inversion technology has become a core tool for meteorological monitoring, disaster warning, and climate research, directly applied in provincial disaster management strategies [4][11] - Future research will focus on enhancing the ground precipitation observation system, improving the compatibility of GNSS networks, and integrating artificial intelligence for better anomaly detection and prediction capabilities [6][12]