理想辅助驾驶技术(LiAuto AD Max)
Search documents
 L4大方向有了:理想自动驾驶团队,在全球AI顶会上揭幕新范式
 机器之心· 2025-10-31 04:11
 Core Viewpoint - The article discusses the transition of AI into its "second half," emphasizing the need for new evaluation and configuration methods for AI to surpass human intelligence, particularly in the context of autonomous driving technology [1][5].   Group 1: AI Paradigm Shift - AI is moving from reliance on human-generated data to experience-based learning, as highlighted by Rich Sutton's paper "The Era of Experience" [1]. - OpenAI's former researcher, Yao Shunyu, asserts that AI must develop new evaluation methods to tackle real-world tasks effectively [1].   Group 2: Advancements in Autonomous Driving - At the ICCV 2025 conference, Li Auto's expert, Zhan Kun, presented a talk on evolving from data closed-loop to training closed-loop in autonomous driving [2][4]. - Li Auto introduced a systematic approach to integrate world models with reinforcement learning into mass-produced autonomous driving systems, marking a significant technological milestone [5].   Group 3: Li Auto's Technological Innovations - Li Auto's advanced driver assistance technology, LiAuto AD Max, is based on the Vision Language Action (VLA) model, showcasing a shift from rule-based algorithms to end-to-end solutions [7]. - The company has achieved significant improvements in its driver assistance capabilities, with a notable increase in the Human Takeover Mileage (MPI) over the past year [9].   Group 4: Challenges and Solutions in Data Utilization - Li Auto identified that the basic end-to-end learning approach faced diminishing returns as the training data expanded to 10 million clips, particularly due to sparse data in critical driving scenarios [11]. - The company aims to transition from a single data closed-loop to a more comprehensive training closed-loop, which includes data collection and iterative training through environmental feedback [12][14].   Group 5: World Model and Synthetic Data - Li Auto is developing a VLA vehicle model with prior knowledge and driving capabilities, supported by a cloud-based world model training environment that incorporates real, synthetic, and exploratory data [14]. - The ability to generate synthetic data has improved the training data distribution, enhancing the stability and generalization of Li Auto's driver assistance system [24].   Group 6: Research Contributions and Future Directions - Since 2021, Li Auto's research team has produced numerous papers, expanding their focus from perception tasks to advanced topics like VLM/VLA and world models [28]. - The company is addressing challenges in interactive intelligent agents and reinforcement learning engines, which are critical for the future of autonomous driving [35][38].   Group 7: Commitment to AI Development - Li Auto has committed nearly half of its R&D budget to AI, establishing multiple teams focused on various AI applications, including driver assistance and smart industrial solutions [43]. - The company has made significant strides in AI technology, with rapid iterations of its strategic AI products, including the VLA driver model launched with the Li Auto i8 [43].