Workflow
类血细胞
icon
Search documents
科学家用人类干细胞构建出“类血细胞”,成功模拟胎儿血液发育过程
Ke Ji Ri Bao· 2025-10-16 08:15
Core Insights - Researchers at Cambridge University have developed "blood-like cells" using human stem cells, which can simulate multiple key stages of early human development, including the generation of blood stem cells [1][2] - The new human embryo-like model accurately replicates the initiation of the hematopoietic system in embryos, providing a powerful tool for drug screening, early blood and immune system development research, and modeling blood diseases [2] Group 1 - The embryo-like structures exhibit self-organization capabilities, forming the three primary germ layers (ectoderm, mesoderm, and endoderm) by the second day of culture [1] - By day eight, beating heart cells were observed, which in real embryos will eventually develop into the heart [1] - On day thirteen, distinct red blood spots were noted, confirming the generation of functional blood cells, which can differentiate into various blood cell types, including key immune cells [1] Group 2 - The ability to produce human blood cells in the laboratory marks a significant step in regenerative medicine, allowing for the potential creation of blood cells that are genetically matched to patients, thus avoiding immune rejection [2] - The model captures the "second wave" of hematopoiesis during human development, which can produce adaptive lymphocytes, including T cells, opening new avenues for studying blood development in both healthy and cancerous states [2]
科学家用人类干细胞构建出“类血细胞”
Ke Ji Ri Bao· 2025-10-15 01:12
Core Insights - Researchers at Cambridge University have developed "blood-like cells" using human stem cells, which can simulate key stages of early human development, including the generation of blood stem cells [1][2] - The new human embryo-like model accurately replicates the initiation of the hematopoietic system in embryos, providing a powerful tool for drug screening, early blood and immune system development research, and modeling blood diseases [2][3] Group 1 - The three-dimensional structures created by human stem cells exhibit self-organization capabilities, forming the three primary germ layers (ectoderm, mesoderm, and endoderm) within two days of culture [1] - By day eight, beating heart cells were observed, which in real embryos develop into the heart, and by day thirteen, functional blood cells were confirmed with visible red blood spots [1][2] - The ability to produce human blood cells in the lab marks a significant step in regenerative medicine, allowing for the potential creation of genetically matched blood cells for patients, thus avoiding immune rejection [2] Group 2 - The model captures the "second wave" of hematopoiesis during human development, which includes the production of adaptive lymphocytes such as T cells, opening new avenues for studying blood development in both healthy and cancerous states [2] - This research adheres to international ethical standards and has received approval from ethics committees, ensuring compliance with regulatory frameworks [1] - The technology may eventually provide tailored blood cells or hematopoietic stem cells for patients with blood diseases like leukemia, potentially saving more lives [3]
科学家用人类干细胞构建出“类血细胞” 成功模拟胎儿血液发育过程
Ke Ji Ri Bao· 2025-10-14 23:54
Core Insights - Researchers at Cambridge University have developed "blood-like cells" using human stem cells, which can simulate multiple key stages of early human development, including the generation of blood stem cells [1][2] - The new human embryo-like model accurately replicates the initiation of the hematopoietic system in embryos, providing a powerful tool for drug screening, early blood and immune system development research, and modeling blood diseases [2] Group 1 - The embryo-like structures exhibit self-organization capabilities, forming the three primary germ layers (ectoderm, mesoderm, and endoderm) by day two of cultivation [1] - By day eight, beating heart cells were observed, which in real embryos will eventually develop into the heart [1] - On day thirteen, the team noted distinct red blood spots, confirming the generation of functional blood cells [1] Group 2 - The ability to produce human blood cells in the laboratory marks a significant step in regenerative medicine, allowing for the potential creation of blood cells that are genetically matched to patients, thus avoiding immune rejection [2] - The model captures the "second wave" of hematopoiesis during human development, which can produce adaptive lymphocytes, including T cells, opening new avenues for studying blood development in both healthy and cancerous states [2]