ML Optimizer

Search documents
AI/ML × EDA 案例:从局部最优走向全局拟合 —— IC-CAP 2025助力半导体参数提取自动化
半导体行业观察· 2025-06-20 00:44
Core Viewpoint - Keysight's ML Optimizer offers a revolutionary solution for semiconductor parameter extraction, addressing the complexities and inefficiencies of traditional optimization methods [2][29]. Group 1: Challenges in Parameter Extraction - The complexity of semiconductor device models has increased, making parameter extraction a significant challenge due to the large number of interrelated parameters [6][11]. - Traditional optimization algorithms, such as Newton-Raphson and Levenberg-Marquardt, often get trapped in local optima, leading to suboptimal extraction results [7][9]. Group 2: Introduction of ML Optimizer - Keysight introduced the ML Optimizer, which utilizes machine learning techniques to dynamically learn the optimization space, allowing for simultaneous optimization of over 40 parameters and multiple target plots [12][13]. - The ML Optimizer is designed to be robust against noise and does not rely on gradient information, making it more effective in non-convex spaces [12][13]. Group 3: Practical Applications and Benefits - In practical applications, the ML Optimizer demonstrated its efficiency by achieving good fitting for a diode model in approximately 300 trials, regardless of initial conditions [16]. - For the GaN HEMT model, the ML Optimizer completed parameter extraction in under 6000 trials within minutes, showcasing its speed and effectiveness [17]. - The optimizer enhances convergence and robustness through an integrated cost function, allowing it to handle complex models like BSIM4 and ASM-HEMT [18][19]. Group 4: Summary and Future Outlook - The ML Optimizer significantly simplifies the parameter extraction process, reducing modeling time from several days to just hours while improving fitting quality and consistency [29]. - The tool was showcased at IC-CAP 2025, with a recorded webinar available for further insights and demonstrations [23].
半导体参数提取,革命性解决方案
半导体行业观察· 2025-06-08 01:16
Core Viewpoint - The article discusses the challenges in semiconductor parameter extraction due to the complexity of device models and the limitations of traditional optimization algorithms, introducing Keysight's ML Optimizer as a revolutionary solution to enhance efficiency and accuracy in this process [1][4]. Group 1: Challenges in Semiconductor Parameter Extraction - The complexity of semiconductor device models has made parameter extraction increasingly challenging, with traditional optimization algorithms often getting stuck in local optima due to unclear gradient changes [1]. - The presence of numerous interrelated parameters in modern semiconductor models leads to inefficiencies in traditional methods, requiring engineers to break down the extraction process into lengthy sub-steps, which can take days or even weeks [1]. Group 2: Introduction of ML Optimizer - Keysight has launched the ML Optimizer, a machine learning-based global optimizer that simplifies the parameter extraction process by synchronously handling vast amounts of data in a single step, reducing the extraction time from days to just hours [2][4]. - The ML Optimizer excels in navigating non-convex parameter spaces, utilizing advanced machine learning algorithms to find global optima more accurately, thereby improving the precision of parameter extraction and the consistency of overall fitting [4]. Group 3: Live Demonstration and Applications - A live demonstration is scheduled to showcase the ML Optimizer's effectiveness in various device modeling tasks, including diodes, GaN HEMTs, MOSFETs, and BJTs, with interactive elements and prizes for participants [4][6]. - The event will feature experts from Keysight, including application engineers and product managers, who will discuss the application of artificial neural networks and the ML Optimizer in device modeling [8][11].
AI重塑器件建模:是德科技ML Optimizer独家揭秘
半导体行业观察· 2025-05-25 02:52
如果您希望可以时常见面,欢迎标星收藏哦~ 在半导体技术飞速发展的今天,器件模型日益复杂,紧凑模型参数提取已成为业界面临的重 大挑战。传统优化算法受困于梯度变化不明确,极易陷入局部最优,但最终提取结果差强人 意的困局。此外,现代半导体模型中存在大量相互关联的参数,这使得传统方法效率更加低 下,建模工程师往往需要将参数提取流程拆解为多个冗长繁琐的子步骤,整个过程可能耗费 数天甚至数周时间,严重制约开发进度。 为 突 破 这 一 技 术 瓶 颈 , 是 德 科 技 ( Keysight ) 重 磅 推 出 基 于 机 器 学 习 的 全 局 优 化 器 ——ML Optimizer,为半导体参数提取带来革命性解决方案! 相较于传统方法,它能在单个步骤内同步处理海量图形与参数,极大简化参数提取流程,将原本漫 长的参数提取周期从数天大幅缩短至短短数小时,大幅提升工作效率。 此外,ML Optimizer 尤其擅长应对非凸参数空间,凭借先进的机器学习算法,它能突破传统方法 的局限,更精准地找到全局最优解,显著提升参数提取的准确性与整体拟合的一致性,为半导体器 件模型的精准构建提供坚实保障。 本次直播将介绍IC-CAP 和 ...
直播预告 | 是德科技ML Optimizer全局优化器:基于机器学习,重塑半导体器件建模新范式
半导体行业观察· 2025-05-04 01:27
在半导体技术飞速发展的今天,器件模型日益复杂,紧凑模型参数提取已成为业界面临的重 大挑战。传统优化算法受困于梯度变化不明确,极易陷入局部最优,但最终提取结果差强人 意的困局。此外,现代半导体模型中存在大量相互关联的参数,这使得传统方法效率更加低 下,建模工程师往往需要将参数提取流程拆解为多个冗长繁琐的子步骤,整个过程可能耗费 数天甚至数周时间,严重制约开发进度。 为 突 破 这 一 技 术 瓶 颈 , 是 德 科 技 ( Keysight ) 重 磅 推 出 基 于 机 器 学 习 的 全 局 优 化 器 ——ML Optimizer,为半导体参数提取带来革命性解决方案! 是德科技 器件建模应用工程师 相较于传统方法,它能在单个步骤内同步处理海量图形与参数,极大简化参数提取流程,将原本漫 长的参数提取周期从数天大幅缩短至短短数小时,大幅提升工作效率。 此外,ML Optimizer 尤其擅长应对非凸参数空间,凭借先进的机器学习算法,它能突破传统方法 的局限,更精准地找到全局最优解,显著提升参数提取的准确性与整体拟合的一致性,为半导体器 件模型的精准构建提供坚实保障。 本次直播将介绍IC-CAP 和 MBP 提 ...