Workflow
SenseHub数采系统
icon
Search documents
深扒了具身的数据路线,四小龙的格局已经形成......
具身智能之心· 2025-12-24 10:04
Core Viewpoint - The development of embodied intelligence over the past 25 years has focused on a closed-loop process of data collection, model training, data scaling, and model optimization, with data remaining a key focus for future advancements [1][5]. Group 1: Data Routes - The industry is not selecting a single optimal solution but is progressing along four distinct data routes simultaneously, each addressing different constraints and stages [3]. - The four data routes have led to the emergence of a competitive landscape termed the "Four Little Dragons of Embodied Data," with key players including Zhiyuan, Galaxy, Tashi, and Luming [4][34]. Group 2: Data Route Descriptions - **Remote Control Real Machine**: This route provides the most authentic data but is also the most expensive and slow, requiring real robots and specialized operators, making it difficult to scale [8][12][14]. - **Simulation Data**: Offers high efficiency and scalability, but faces challenges due to the domain gap, limiting its effectiveness in real-world applications [16][18][20]. - **Human Video**: This route is cost-effective and covers a wide range of scenarios but lacks critical feedback mechanisms and is not a primary data source for initial capabilities [22][25]. - **UMI Data**: This approach decouples real interaction data from specific robots, allowing for more versatile and scalable data collection, thus becoming a foundational infrastructure for embodied data [27][30][31]. Group 3: Industry Practices - In the remote control real machine data direction, Tesla is advancing its remote operation system, while Zhiyuan Robotics is deepening its focus on real bodies and task loops [35]. - In the simulation data route, Galaxy General is expanding synthetic data scale through computational power and simulation engines [35]. - In the human video data direction, Tashi is developing large-scale human behavior video datasets to enhance semantic coverage [35]. - The UMI route is represented by Luming Robotics, which has made significant strides in scaling and engineering UMI data collection systems [35][39]. Group 4: Future Implications - As the industry transitions from proving feasibility to continuous evolution, the ability to consistently produce high-quality real data will become increasingly critical [37]. - The four data routes are not mutually exclusive; they each play distinct roles in the overall ecosystem, contributing to a clearer path forward for embodied intelligence [38][40]. - The importance of time accumulation is emphasized, particularly for the UMI route, which relies heavily on early choices and sustained investment [41][42]. - The current landscape of the "Four Little Dragons" serves as a structural description of the industry, with future success dependent on which routes and teams can maintain operational continuity and data advantages [44][45].