Workflow
VLA (Vision Language Action) 模型
icon
Search documents
基于313篇VLA论文的综述与1661字压缩版
理想TOP2· 2025-09-25 13:33
Core Insights - The emergence of Vision Language Action (VLA) models signifies a paradigm shift in robotics from traditional strategy-based control to general robotic technology, enabling active decision-making in complex environments [12][22] - The review categorizes VLA methods into five paradigms: autoregressive, diffusion-based, reinforcement learning, hybrid, and specialized methods, providing a comprehensive overview of their design motivations and core strategies [17][20] Summary by Categories Autoregressive Models - Autoregressive models generate action sequences as time-dependent processes, leveraging historical context and sensory inputs to produce actions step-by-step [44][46] - Key innovations include unified multimodal Transformers that tokenize various modalities, enhancing cross-task action generation [48][49] - Challenges include safety, interpretability, and alignment with human values [47][56] Diffusion-Based Models - Diffusion models frame action generation as a conditional denoising process, allowing for probabilistic action generation and modeling multimodal action distributions [59][60] - Innovations include modular optimization and dynamic adaptive reasoning to improve efficiency and reduce computational costs [61][62] - Limitations involve maintaining temporal consistency in dynamic environments and high computational resource demands [5][60] Reinforcement Learning Models - Reinforcement learning models integrate VLMs with reinforcement learning to generate context-aware actions in interactive environments [6] - Innovations focus on reward function design and safety alignment mechanisms to prevent high-risk behaviors while maintaining task performance [6][7] - Challenges include the complexity of reward engineering and the high computational costs associated with scaling to high-dimensional real-world environments [6][9] Hybrid and Specialized Methods - Hybrid methods combine different paradigms to leverage the strengths of each, such as using diffusion for smooth trajectory generation while retaining autoregressive reasoning capabilities [7] - Specialized methods adapt VLA frameworks to specific domains like autonomous driving and humanoid robot control, enhancing practical applications [7][8] - The focus is on efficiency, safety, and human-robot collaboration in real-time inference and interactive learning [7][8] Data and Simulation Support - The development of VLA models heavily relies on high-quality datasets and simulation platforms to address data scarcity and testing risks [8][34] - Real-world datasets like Open X-Embodiment and simulation tools such as MuJoCo and CARLA are crucial for training and evaluating VLA models [8][36] - Challenges include high annotation costs and insufficient coverage of rare scenarios, which limit the generalization capabilities of VLA models [8][35] Future Opportunities - The integration of world models and cross-modal unification aims to evolve VLA into a comprehensive framework for environment modeling, reasoning, and interaction [10] - Causal reasoning and real interaction models are expected to overcome limitations of "pseudo-interaction" [10] - Establishing standardized frameworks for risk assessment and accountability will transition VLA from experimental tools to trusted partners in society [10]