Workflow
XIUQIANG GLASS(300160)
icon
Search documents
珠海港:收购秀强股份有利于加快公司在新能源产业的布局和延伸
Zheng Quan Ri Bao Wang· 2026-01-09 13:40
证券日报网讯1月9日,珠海港(000507)在互动平台回答投资者提问时表示,收购秀强股份(300160) 有利于加快公司在新能源产业的布局和延伸,进一步拓宽新能源业务范围,构建新的发展空间,提升持 续盈利能力。公司在控股秀强股份后,秀强股份资产规模与经营业绩稳步提升,秀强股份始终注重与股 东分享发展成果,严格遵循监管要求,结合自身发展情况及资金安排,坚持以稳健经营、现金分红等多 种方式积极回馈投资者,未来仍将积极稳健发展主业,提高核心竞争力及长期投资价值,并持续向投资 者传递经营成果。 ...
秀强股份:2025年12月31日股东户数为35359户
Zheng Quan Ri Bao· 2026-01-07 09:40
证券日报网讯 1月7日,秀强股份在互动平台回答投资者提问时表示,公司2025年12月31日股东户数为 35359户。 (文章来源:证券日报) ...
秀强股份(300160) - 光大证券股份有限公司关于江苏秀强玻璃工艺股份有限公司2025年度现场培训报告
2026-01-07 08:50
光大证券股份有限公司 关于江苏秀强玻璃工艺股份有限公司 培训地点:公司会议室+线上视频会议 培训人员:刘合群(保荐代表人) 培训对象:公司全体董事、高级管理人员及部分中层以上管理人员等相关人 员 培训形式:现场授课和远程会议相结合 二、培训内容 本次培训主要介绍了: 2025 年度现场培训情况报告 光大证券股份有限公司(以下简称"光大证券"或"保荐机构")作为负责 江苏秀强玻璃工艺股份有限公司(以下简称"秀强股份"或"公司")持续督导 工作的保荐机构,根据《证券发行上市保荐业务管理办法》《深圳证券交易所上 市公司自律监管指引第 2 号—创业板上市公司规范运作》《深圳证券交易所上市 公司自律监管指引第 13 号—保荐业务》等相关规定,于 2025 年 12 月 29 日对秀 强股份全体董事、高级管理人员及部分中层以上管理人员进行了培训。现将培训 情况报告如下: 一、培训基本情况 培训时间:2025 年 12 月 29 日 1 三、现场培训结论 本次培训通过课件展示、线下及线上讲解和交流的形式并围绕资料重点内容、 结合案例分析向参训人员做了详细讲解。公司接受培训的人员认真学习了本次培 训授课相关内容,并积极进行交 ...
秀强股份(300160) - 光大证券股份有限公司关于江苏秀强玻璃工艺股份有限公司2025年度现场检查报告
2026-01-07 08:50
| 其他资料或客观状况进行查阅。 | | | --- | --- | | 1、是否按照相关规定建立内部审计制度并设立内部审计部 | √ | | 门(如适用) | | | 2、是否在股票上市后六个月内建立内部审计制度并设立内 | √ | | 部审计部门(如适用) | | | 3、内部审计部门和审计委员会的人员构成是否合规(如适 | √ | | 用) | | | 4、审计委员会是否至少每季度召开一次会议,审议内部审 | √ | | 计部门提交的工作计划和报告等(如适用) | | | 5、审计委员会是否至少每季度向董事会报告一次内部审计 | √ | | 工作进度、质量及发现的重大问题等(如适用) | | | 6、内部审计部门是否至少每季度向审计委员会报告一次内 | | | 部审计工作计划的执行情况以及内部审计工作中发现的问 | √ | | 题等(如适用) | | | 7、内部审计部门是否至少每季度对募集资金的存放与使用 | √ | | 情况进行一次审计(如适用) | | | 8、内部审计部门是否在每个会计年度结束前二个月内向审 | √ | | 计委员会提交次一年度内部审计工作计划(如适用) | | | 9、内部审计 ...
秀强股份(300160) - 关于使用部分闲置募集资金进行现金管理到期赎回并继续进行现金管理的进展公告
2026-01-06 08:12
证券代码:300160 证券简称:秀强股份 公告编号:2026-001 江苏秀强玻璃工艺股份有限公司 关于使用部分闲置募集资金进行现金管理到期赎回并 继续进行现金管理的进展公告 本公司及董事会全体成员保证信息披露的内容真实、准确、完整,没有 虚假记载、误导性陈述或重大遗漏。 江苏秀强玻璃工艺股份有限公司(以下简称"公司")于2025年12月19日召 开的第五届董事会第二十五次会议审议通过了《关于使用部分闲置募集资金进行 现金管理的议案》,为提高闲置募集资金使用效率,增加公司现金资产收益,同 意公司在不影响募投项目投资计划且确保资金安全的前提下,使用不超过人民币 50,000万元(含本数,下同)的暂时闲置募集资金进行现金管理,授权期限自2026 年1月1日至2026年12月31日,资金在授权的额度和期限范围内可循环滚动使用。 具体内容详见公司于2025年12月19日在巨潮资讯网(www.cninfo.com.cn)上披 露的相关公告(公告编号:2025-057)。 近日,公司在授权范围内使用部分闲置募集资金购买的现金管理产品已到期 赎回并继续进行了现金管理,现将具体情况公告如下: | 一、使用部分闲置募集资金购 ...
秀强股份(300160.SZ):公司玻璃深加工产品暂未应用于航天航空领域
Ge Long Hui· 2026-01-05 06:58
格隆汇1月5日丨秀强股份(300160.SZ)在投资者互动平台表示,公司玻璃深加工产品暂未应用于航天航 空领域。 ...
机器学习因子选股月报(2026年1月)-20251231
Southwest Securities· 2025-12-31 02:04
Quantitative Models and Construction Methods 1. Model Name: GAN_GRU - **Model Construction Idea**: The GAN_GRU model combines Generative Adversarial Networks (GAN) for feature generation and Gated Recurrent Unit (GRU) for time-series feature encoding to construct a stock selection factor[4][13][14] - **Model Construction Process**: 1. **GAN Component**: - The generator (G) learns the real data distribution and generates realistic samples from random noise \( z \) (Gaussian or uniform distribution). The generator's loss function is: $$ L_{G} = -\mathbb{E}_{z\sim P_{z}(z)}[\log(D(G(z)))] $$ where \( D(G(z)) \) represents the discriminator's probability of classifying generated data as real[24][25][26] - The discriminator (D) distinguishes real data from generated data. Its loss function is: $$ L_{D} = -\mathbb{E}_{x\sim P_{data}(x)}[\log D(x)] - \mathbb{E}_{z\sim P_{z}(z)}[\log(1-D(G(z)))] $$ where \( D(x) \) is the probability of real data being classified as real, and \( D(G(z)) \) is the probability of generated data being classified as real[27][29][30] - GAN training alternates between optimizing \( G \) and \( D \) until convergence[30] 2. **GRU Component**: - Two GRU layers (GRU(128, 128)) are used to encode time-series features, followed by a Multi-Layer Perceptron (MLP) with layers (256, 64, 64) to predict returns. The final output \( pRet \) is used as the stock selection factor[22] 3. **Feature Input and Processing**: - Input features include 18 price-volume characteristics (e.g., closing price, turnover, etc.) sampled over the past 400 days, with a shape of \( 40 \times 18 \) (40 days of features)[18][19][37] - Features undergo outlier removal, standardization, and cross-sectional normalization[18] 4. **Training Details**: - Training-validation split: 80%-20% - Semi-annual rolling training (June 30 and December 31 each year) - Hyperparameters: batch size equals the number of stocks, Adam optimizer, learning rate \( 1e-4 \), IC loss function, early stopping (10 rounds), max training rounds (50)[18] 5. **Stock Selection**: - Stocks are filtered to exclude ST stocks and those listed for less than six months[18] - **Model Evaluation**: The GAN_GRU model effectively captures price-volume time-series features and demonstrates strong predictive power for stock returns[4][13][22] --- Model Backtesting Results 1. GAN_GRU Model - **IC Mean**: 0.1119*** (2019-2025)[4][41] - **ICIR (non-annualized)**: 0.89[42] - **Turnover Rate**: 0.83X[42] - **Recent IC**: 0.0331*** (December 2025)[4][41] - **1-Year IC Mean**: 0.0669***[4][41] - **Annualized Return**: 37.40%[42] - **Annualized Volatility**: 23.39%[42] - **IR**: 1.60[42] - **Maximum Drawdown**: 27.29%[42] - **Annualized Excess Return**: 22.42%[4][42] --- Quantitative Factors and Construction Methods 1. Factor Name: GAN_GRU Factor - **Factor Construction Idea**: The GAN_GRU factor is derived from the GAN_GRU model, leveraging GAN for price-volume feature generation and GRU for time-series encoding[4][13][14] - **Factor Construction Process**: - The GAN generator processes raw price-volume time-series features (\( Input\_Shape = 40 \times 18 \)) and outputs transformed features with the same shape (\( Input\_Shape = 40 \times 18 \))[37] - The GRU component encodes these features into a predictive factor for stock selection[22] - The factor undergoes industry and market capitalization neutralization and standardization[22] - **Factor Evaluation**: The GAN_GRU factor demonstrates robust performance across various industries and time periods, with significant IC values and excess returns[4][41] --- Factor Backtesting Results 1. GAN_GRU Factor - **IC Mean**: 0.1119*** (2019-2025)[4][41] - **ICIR (non-annualized)**: 0.89[42] - **Turnover Rate**: 0.83X[42] - **Recent IC**: 0.0331*** (December 2025)[4][41] - **1-Year IC Mean**: 0.0669***[4][41] - **Annualized Return**: 37.40%[42] - **Annualized Volatility**: 23.39%[42] - **IR**: 1.60[42] - **Maximum Drawdown**: 27.29%[42] - **Annualized Excess Return**: 22.42%[4][42] 2. Industry-Specific Performance - **Top 5 Industries by Recent IC (October 2025)**: - Social Services: 0.4243*** - Coal: 0.2643*** - Environmental Protection: 0.2262*** - Retail: 0.1888*** - Steel: 0.1812***[4][41][42] - **Top 5 Industries by 1-Year IC Mean**: - Social Services: 0.1303*** - Steel: 0.1154*** - Non-Bank Financials: 0.1157*** - Retail: 0.1067*** - Building Materials: 0.1017***[4][41][42] 3. Industry-Specific Excess Returns - **Top 5 Industries by December 2025 Excess Returns**: - Banking: 4.30% - Real Estate: 3.51% - Environmental Protection: 2.18% - Retail: 1.76% - Machinery: 1.71%[2][45] - **Top 5 Industries by 1-Year Average Excess Returns**: - Banking: 2.12% - Real Estate: 1.93% - Environmental Protection: 1.50% - Retail: 1.46% - Machinery: 1.23%[2][46]
秀强股份:公司募投项目相关信息请以公告为准
Zheng Quan Ri Bao· 2025-12-24 12:42
(文章来源:证券日报) 证券日报网讯 12月24日,秀强股份在互动平台回答投资者提问时表示,公司募投项目相关信息请以公 司在指定信息披露媒体发布的公告为准。公司将严格按照监管法规要求,在定期报告及相关公告中持续 披露相关内容。 ...
珠海港:公司坚持稳健发展,聚焦港航物流与新能源两大主业
(编辑 丛可心 王雪儿) 证券日报网讯 12月23日,珠海港在互动平台回答投资者提问时表示,公司坚持稳健发展,聚焦港航物 流与新能源两大主业,争取以更好的业绩回报投资者,同时以价值管理为主线开展各项工作,强化资本 市场沟通,持续传递公司价值。公司在控股秀强股份后,秀强股份资产规模与经营业绩稳步提升。秀强 股份始终注重与股东分享发展成果,严格遵循监管要求,结合自身发展情况及资金安排,坚持以稳健经 营、现金分红等多种方式积极回馈投资者,未来仍将积极稳健发展主营业务,提高核心竞争力及长期投 资价值,持续向投资者传递经营成果。 ...
秀强股份:公司积极关注研究合理有效、利于全体股东利益的中长期激励机制
(编辑 任世碧) 证券日报网讯 12月22日,秀强股份在互动平台回答投资者提问时表示,公司已构建与现阶段业务发展 目标相匹配的薪酬管理体系,并积极关注研究合理有效、有利于全体股东利益的中长期激励机制,使核 心管理人员和技术人员能够更加积极主动地参与公司决策、共担风险、共享成果。 ...