中心化控制

Search documents
AI将受困于人类数据
3 6 Ke· 2025-06-16 12:34
Core Insights - The article discusses the transition from the "human data era" to the "experience era" in artificial intelligence, emphasizing the need for AI to learn from first-hand experiences rather than relying solely on human-generated data [2][5][10] - Richard S. Sutton highlights the limitations of current AI models, which are based on second-hand experiences, and advocates for a new approach where AI interacts with its environment to generate original data [6][7][11] Group 1: Transition to Experience Era - The current large language models are reaching the limits of human data, necessitating a shift to real-time interaction with environments to generate scalable original data [7][10] - Sutton draws parallels between AI learning and human learning, suggesting that AI should learn through sensory experiences similar to how infants and athletes learn [6][8] - The experience era will require AI to develop world models and memory systems that can be reused over time, enhancing sample efficiency through high parallel interactions [3][6] Group 2: Decentralized Cooperation vs. Centralized Control - Sutton argues that decentralized cooperation is superior to centralized control, warning against the dangers of imposing single goals on AI, which can stifle innovation [3][12] - The article emphasizes the importance of diverse goals among AI agents, suggesting that a multi-objective ecosystem fosters innovation and resilience [3][12][13] - Sutton posits that human and AI prosperity relies on decentralized cooperation, which allows for individual goals to coexist and promotes beneficial interactions [12][14][16] Group 3: Future of AI Development - The development of fully intelligent agents will require advancements in deep learning algorithms that enable continuous learning from experiences [11][12] - Sutton expresses optimism about the future of AI, viewing the creation of superintelligent agents as a positive development for society, despite the long-term nature of this endeavor [10][11] - The article concludes with a call for humans to leverage their experiences and observations to foster trust and cooperation in the development of AI [17]
AI将受困于人类数据
腾讯研究院· 2025-06-16 09:26
Core Viewpoint - The article discusses the transition from the "human data era" to the "experience era" in artificial intelligence, emphasizing the need for AI to learn from first-hand experiences rather than relying solely on human-generated data [1][5][12]. Group 1: Transition to Experience Era - AI models currently depend on second-hand experiences, such as internet text and human annotations, which are becoming less valuable as high-quality human data is rapidly consumed [1][5]. - The marginal value of new data is declining, leading to diminishing returns despite the increasing scale of models, a phenomenon referred to as "scale barriers" [1][5]. - To overcome these limitations, AI must interact with its environment to generate first-hand experiences, akin to how infants learn through play or athletes make decisions on the field [1][5][8]. Group 2: Technical Characteristics of the Experience Era - In the experience era, AI agents need to operate continuously in real or high-fidelity simulated environments, using environmental feedback as intrinsic reward signals rather than human preferences [2][5]. - The development of reusable world models and memory systems is crucial, along with significantly improving sample efficiency through high parallel interactions [2][5]. Group 3: Philosophical and Governance Implications - The article highlights the superiority of decentralized cooperation over centralized control, warning against the dangers of imposing single objectives on AI, which mirrors historical attempts to control human behavior out of fear [2][5][18]. - A diverse ecosystem of multiple goals fosters innovation and resilience, reducing the risks of single points of failure and rigidity in AI governance [2][5][18]. Group 4: Future Perspectives - The evolution of AI is seen as a long-term journey requiring decades of development, with the success hinging on stronger continuous learning algorithms and an open, shared ecosystem [5][12]. - The article posits that the creation of superintelligent agents and their collaboration with humans will ultimately benefit the world, emphasizing the need for patience and preparation for this transformation [12].